令和2年度版

線形代数基礎
はしがき

このテキストは通常通年で行われる線形代数の講義を半期14週で行うために作成した。そのため標準的な線形代数の教科書で扱われる内容のうち、幾つかの単元を割愛した。まず第一に、ランクの概念を導入していない。従ってこのテキストで扱う正方行列は、特に断らない限り正方行列である。その結果、「部分空間」も省略されている。「1次変換」についても、幾つかの代表的な例を示すことにとめた。しかし、これらは群論に繋がっていく概念で将来理論を希望する学生はどこかで勉強してほしい。宇宙も含めて我々の世界の多くのことは対称性で説明できる。その対称性を理解する上で重要なのか群論である。

掃出し出しも行列の標準変形の練習として線形代数では必ず習うが、実際に逆行列を掃出し出し法で計算することもまずないので省略した。同じ理由でクラメールの公式も省略した。また、「ジョルダンの標準形」は重要であるが全く扱っていない。このテキストで省略した内容について学びたい人は、下記の参考文献を見て欲しい。

上記のように幾つかの単元を省略したが、一方で扱った定理や公式は全て証明をつけた。行列式を計算したり、対角化をしたりする方法を覚えても重要であるが、証明に使われる考え方は将来研究や開発の現場でいろいろな関係式を導く際に重要である。計算はMathematicaがしてくれるが、証明はしてられないのである。

巻末には、数学と物理学で表記の違する演算についてまとめた表をつけた。この講義の題名は「線形代数基礎」なので基本的に数学のお作法で定義や表記をしているが、物理ではやや異なる定義や表記を用いる。特に内積は、数学では後のベクトルの複素共役をとるのに対して、物理では前のベクトルの複素共役を取る。その他は、複素共役の跡やエルミート行列の記号も異なるので数学と物理の教科書を見比べながら読むときは注意が必要である。

参考文献を4つあげておく。(1) は多くの先生が学生時代に教科書として指定された本だと思う。線形代数では、いまだに一番良い本だと思うが記述の仕方が少し難しいかもしれない。余談ながら、英語の「linear」は「線形」と「線形」の2つの訳語がある。筆者は「線型」が正しいと思っているが、講義には多数派の「線形代数基礎」とした。授業中に「線型」と書いても気にしないで欲しい。(2) は(1)のダイジェスト版でありながら、証明がきちんととしていて、おなかの読みやすい言葉で書かれていると思う。このテキストでも多くの部分を参考にしている。(3) は内容的には少し物足りないが、実際の計算の仕方が丁寧に説明されている。(4) は物理学で線形代数を応用しようと思う読者にはお勧めである。難易度は(1) と同じくらいだが、物理の言葉で書かれている。また、数値計算に必要な知識も盛り込まれている。

参考文献
(1) 「線型代数入門」，齋藤 正彦，東京大学出版会
(2) 「線形代数学」，青木美穂，植田玲，庄司邦孝，学術図書出版社
(3) 「例題から展開する線形代数」，海老原円，サイエンス社
(4) 「線形代数」，藤原穣夫，岩波書店
目次

1 ベクトルの復習 1
 1.1 概念の拡張 1
 1.1.1 n次元への拡張 1
 1.1.2 行ベクトルと列ベクトル 1
 1.1.3 複素ベクトルへの拡張 1
 1.2 内積 2
 1.2.1 定義と直交性 2
 1.2.2 ベクトルのノルム（大きさ） 2
 1.3 外積（3次元ベクトル） 3
 1.4 平面の方程式 3
 1.4.1 パラメータ表示 3
 1.4.2 パラメータを含まない表示 4
 1.5 直線独立と線形従属 4
 1.6 完全系 5
 1.7 座標系の取り方 5
 1.8 正規直交座標系 6
 1.9 グラム・シュミットの直交化 6

2 行列の定義と演算 8
 2.1 行列の定義 8
 2.2 列ベクトルまたは行ベクトルによる表記 8
 2.3 様々な行列の定義 9
 2.4 行列のスカラー倍と和・差 10
 2.5 行列の積 11
 2.6 単位行列 13
 2.7 行列の幕乗 13
 2.8 行列の跡 14

3 行列式 15
 3.1 置換と偶奇性 15
 3.2 行列式の定義 17
 3.3 行列式の幾何学的意味 19
 3.4 行列式の性質 19
 3.5 余因子と行列式の展開 25

4 逆行列 30
 4.1 逆行列の定義 30
 4.2 2次正方行列の逆行列 30
 4.3 一般の逆行列 31

5 1次変換と行列 32
 5.1 1次変換の定義 32
 5.2 1次変換の例 32
 5.2.1 相似変換 33
 5.2.2 対称変換 33
5.2.3 回転 ... 34
5.3 ユニタリ変換とユニタリ行列 34
 5.3.1 随伴行列 .. 34
 5.3.2 ユニタリ行列 .. 35
 5.3.3 ユニタリ変換と座標変換 36

6 固有値・固有ベクトルと対角化 .. 38
 6.1 固有値・固有ベクトル .. 38
 6.2 エルミート行列 ... 40
 6.3 エルミート行列の固有値・固有ベクトル 40
 6.4 エルミート行列と対角化 .. 41
 6.5 エルミート行列の対角化と座標変換 42
 6.6 2次形式と標準化 ... 42

A 表記や定義の違い .. 44
1 ベクトルの復習

1.1 概念の拡張

1.1.1 n 次元への拡張

高校では、2次元もしくは3次元のベクトルを扱ってきたが、これからはn次元のベクトルを扱うことにする。成分で書き下すと,

$$\mathbf{a} = (a_1, a_2, \ldots, a_n)$$

となる。

1.1.2 行ベクトルと列ベクトル

高校では、ベクトルの成分を横に並べて表示していたが、これを行ベクトルと呼ぶ。

$$\mathbf{a} = (a_1, a_2, \ldots, a_n)$$

一方、成分を縦に並べたものを列ベクトルと呼ぶ。

$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

以下では、特に断らない限りベクトルは列ベクトルとする。成分が同じでも行ベクトルと列ベクトルは異なるものなので注意すること。

1.1.3 複素ベクトルへの拡張

これまで、ベクトルの成分は実数を考えてきたが、これを複素数に拡張する。

$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

に対して、それぞれの成分の複素共役をとったベクトルを複素共役ベクトルと呼び、$\bar{\mathbf{a}}$で表す。即ち,

$$\bar{\mathbf{a}} = \begin{pmatrix} \bar{a}_1 \\ \bar{a}_2 \\ \vdots \\ \bar{a}_n \end{pmatrix}$$

[例題1.1] $\mathbf{a} = \begin{pmatrix} 1 \\ i \\ 1 + i \end{pmatrix}$ に対して、$\bar{\mathbf{a}}$を求めよ。
1.2 内積

1.2.1 定義と直交性

定義 1.1. n 次元の2つのベクトル，

\[
a = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix},
\]

が与えられたとき，その内積 (a, b) を，

\[
(a, b) = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n \tag{1.1}
\]

により定義する。a, b が実ベクトルの時，$b = b$ より，式 (1.1) は，

\[
(a, b) = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n \tag{1.2}
\]

となる。$(a, b) = 0$ のとき，ベクトル a と b は直交するという。

[例題 1.2] 以下のそれぞれについて，ベクトル a と b の内積 (a, b) を求めよ。

(1) $a = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$, $b = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$

(2) $a = \begin{pmatrix} 1 \\ i \\ 1+i \end{pmatrix}$, $b = \begin{pmatrix} 2 \\ 1+i \\ i \end{pmatrix}$

1.2.2 ベクトルのノルム (大きさ)

定義 1.2. ベクトル a のノルム (大きさ) $\|a\|$ を

\[
\|a\| = \sqrt{(a, a)} = \sqrt{\sum_{i=1}^{n} a_i \bar{a}_i} = \sqrt{a_1 \bar{a}_1 + a_2 \bar{a}_2 + \cdots + a_n \bar{a}_n} \tag{1.3}
\]

により定義する。

[例題 1.3] $a = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ i \\ 1+i \end{pmatrix}$ とする時，それぞれのベクトルのノルム $\|a\|$, $\|b\|$ を求めよ。
1.3 外積（3次元実ベクトル）

定義 1.3. 2つの3次元実ベクトル \(\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \), \(\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \) に対して、その外積 \(\mathbf{a} \times \mathbf{b} \) を、

\[
\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}
\]

(1.4)

により定義する。

定理 1.1. 外積は以下の性質を持つ。

1. 外積 \(\mathbf{a} \times \mathbf{b} \) は、ベクトル \(\mathbf{a} \) 及び \(\mathbf{b} \) と直交し、その向きは \(\mathbf{a} \) の方向から \(\mathbf{b} \) の方向に右ねじを回した時にねじの進む方向である。
2. 外積 \(\mathbf{a} \times \mathbf{b} \) のノルム \(\| \mathbf{a} \times \mathbf{b} \| \) はベクトル \(\mathbf{a} \) と \(\mathbf{b} \) が作る平行四辺形の面積と等しい。

[例題 1.4] 定理 1.1 を証明せよ。

[例題 1.5] \(\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \), \(\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \) とする時、以下の問いに答えよ。

(1) \(\mathbf{a} \times \mathbf{b} \) を計算せよ。
(2) \((\mathbf{a}, \mathbf{a} \times \mathbf{b}) = 0 \) を示せ。
(3) ベクトル \(\mathbf{a} \) と \(\mathbf{b} \) の作る平行四辺形の面積を求めよ。

系 1.2. 3つのベクトル \(\mathbf{a}, \mathbf{b}, \mathbf{c} \) が作る平行六面体の体積 \(V \) は、

\[
V = \| (\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \|
\]

(1.5)

で与えられる。

[例題 1.6] 系 1.2 を証明せよ。

1.4 平面の方程式

1.4.1 パラメータ表示

点 \(\mathbf{x}_0 = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} \) を通り、ベクトル \(\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \) 及び \(\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \) に平行な平面の方程式はパラメータ \(\alpha, \beta \) を用いて、

\[
\mathbf{x} = \mathbf{x}_0 + \alpha \mathbf{a} + \beta \mathbf{b}
\]

(1.6)

と書ける。成分で書くと、

\[
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \alpha \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \beta \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}
\]

(1.7)
となる。特に原点を通る時には、

\[x = \alpha a + \beta b \] (1.8)

成分で書くと、

\[
\begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix} = \alpha
\begin{pmatrix}
 a_1 \\
 a_2 \\
 a_3
\end{pmatrix} + \beta
\begin{pmatrix}
 b_1 \\
 b_2 \\
 b_3
\end{pmatrix}
\] (1.9)

となる。

1.4.2 パラメータを含まない表示

点 \(x_0 = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} \) を通し、法線ベクトル \(n = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \) に垂直な平面の方程式は、

\[(x - x_0, n) = 0 \] (1.10)

と書ける。成分で書くと、

\[n_1(x - x_0) + n_2(y - y_0) + n_3(z - z_0) = 0 \] (1.11)

となる。特に原点を通る時は、

\[(x, n) = 0 \] (1.12)

となる。成分で書くと、

\[n_1 x + n_2 y + n_3 z = 0 \] (1.13)

となる。

[例題 1.7] \(n \parallel a \times b \) とすると、式 (1.6) または式 (1.7) から式 (1.10) または式 (1.11) が導けることを示せ。

1.5 線形独立と線形従属

定義 1.4. \(n \) 個のベクトルの組 \(\{ a_1, a_2, \ldots, a_n \} \) があって、

\[\alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n = 0 \] (1.14)

を満たす係数の組 \(\{ \alpha_1, \alpha_2, \ldots, \alpha_n \} \) が、\(\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0 \) しかないとき、\(n \) 個のベクトルは互いに線形独立であるという。
一方、式 (1.14) を満たす \(\{ \alpha_1, \alpha_2, \ldots, \alpha_n \} \) が \(\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0 \) 以外にも存在するとき、\(n \) 個のベクトルは互いに線形従属であるという。

[例題 1.8] 以下の問いに答えなさい。

(1) 2 つのベクトル \(a_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ a_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \) が線形独立であることを示せ。

(2) 2 つのベクトル \(a_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ a_2 = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \) が線形従属であることを示せ。

(3) 3 つのベクトル \(a_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ a_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ a_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \) が線形従属であることを示せ。

[例題 1.9] 以下の問いに答えなさい。
(1) 3つのベクトル \(a_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \), \(a_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \), \(a_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \) が線形独立であることを示す。

(2) 3つのベクトル \(a_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \), \(a_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \), \(a_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \) が線形従属であることを示す。

1.6 完全系

\(n \) 次元空間では、以下のことが成り立つ。

- \(n \) 個の互いに線形独立なベクトルの組 \(\{a_1, a_2, \ldots, a_n\} \) を選ぶことができる。以下では簡単のためにこの線形独立なベクトルの組を \(\{a_i\} \) と書くことにする。
- 線形独立なベクトルの組は無数に存在する。
- 線形独立なベクトルの組 \(\{a_1, a_2, \ldots, a_n\} \) を1組用意すれば、任意のベクトル \(x \) はその線形結合として、
 \[x = a_1a_1 + a_2a_2 + \cdots + a_na_n = \sum_{i=1}^{n} a_ia_i \] （1.15）
 と表される。結合係数 \(a_i \) は一意的に定まる。
- この時、\(\{a_i\} \) は完全系を張ると言う。
- また、線形独立なベクトルの組 \(\{a_i\} \) を基底ベクトルと呼ぶ。

1.7 座標系の取り方

線形独立でなおかつ完全系を張るベクトルの組（すなわち基底ベクトル） \(\{a_i\} \) が決まれば座標系が決まる。任意の点 \(x \) の座標は、式（1.15）のように \(x \) を基底ベクトルの線形結合で表したときの結合係数の組を用いて \((a_1, a_2, \ldots, a_n) \) で表す。

我々はこれまで、多くの場合にカルテシアン座標を用いてきた。例えば、2次元のカルテシアン座標では基底ベクトルとして、\(e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \) と \(e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \) をとる。カルテシアン座標で \((x, y)\) で与えられる点 \(x \) は、

\[x = xe_1 + ye_2 = \begin{pmatrix} x \\ y \end{pmatrix} \]

となるので、\((x, y)\) と書くのである。

[例題 1.10] カルテシアン座標を用いて \((3, 2)\) で表される点について以下の問いに答えなさい。

(1) 2つの線形独立なベクトル \(a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \) と \(a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \) を基底としたとき、この点はどのように表されるか。

(2) 2つの線形独立なベクトル \(b_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \) と \(b_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \) を基底としたとき、この点はどのように表されるか。

上の例（1）では、\((a_1, a_2) = 0 \) より \(a_1 \) と \(a_2 \) は直交しているが、大きさは \(\|a_1\| = \|a_2\| = \sqrt{2} \) で1ではない。
一方例（2）では、\(b_1 \) と \(b_2 \) は大きさも1ではなく直交もしていない。このような座標系を決める基底ベクトルは直交している必要も大きさが1である必要も無い。
1.8 正規直交座標系

n 次元系で完全系を張る n 個のベクトル組 $\{a_i\}$ を基底ベクトルとする座標系で、

$$ (a_i, a_j) = 0 \ (for \ i \neq j) \quad (1.16) $$

を満たすとき基底ベクトルは直交していると言う、こうした座標系を直交座標系と呼ぶ。
また、基底ベクトルが、

$$ ||a_1|| = ||a_2|| = \cdots = ||a_n|| = 1 \quad (1.17) $$

を満たすとき、基底ベクトルは規格化されていると言う。
基底ベクトルが直交していてかつ規格化されているとき特に正規直交座標系と呼ぶ。このときは、

$$(a_i, a_j) = \delta_{ij} \quad (1.18)$$

が成り立つ。
ここで、δ_{ij} は「クロネッカーのデルタ」と呼ばれる記号で、i と j が等しい時に 1、それ以外の時に 0 になる。即ち、

$$ \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \quad (1.19) $$

カルテシアン座標は正規直交座標系の 1 つの例である。
n 次元系で n 個の線形独立なベクトルを用意すれば完全系を張り、任意のベクトル x はその線形結合で式 (1.15) の形で書けることはすでに述べたが、基底ベクトル $\{a_i\}$ が正規直交座標系をなすとき、その結合係数 $\{a_i\}$ は、

$$ a_i = (x, a_i) \quad (1.20) $$

で与えられる。従って、

定理 1.3. 基底ベクトル $\{a_i\}$ が正規直交座標系をなすとき任意の点 x はその線形結合で、

$$ x = \sum_{i=1}^{n} (x, a_i) a_i \quad (1.21) $$

と表される。これらは正規直交座標系を用いる大きな利点である。

【例題 1.11】 式 (1.20) を証明しなさい。

1.9 グラム・シュミットの直交化

線形独立で完全系を張った基底ベクトル (従って座標系) が与えられていれば、これから規格直交した基底ベクトル (従って正規直交座標) を作ることができる。以下にその手順を示す。
規格直交化されていない線形独立な n 次元基底ベクトルの組 $\{a_i\}$ が与えられていて、これから正規直交ベクトルの組 $\{e_i\}$ を作る事を考える。

1. 先ず, $e_1 = a_1/||a_1||$ より e_1 を作る。

2. 次に, $a_2' = a_2 - (a_2, e_1)e_1$, $e_2' = a_2'/||a_2'||$ により e_2 を作る。
3. 同様にして, i 番目まで規格直交化されていて $i+1$ 番目から n 番目まで規格直交化されていないベクトルの組 \(\{e_1, e_2, \ldots, e_i, a_{i+1}, \ldots, a_n\} \) があれば, $i+1$ 番目の規格直交化された基底ベクトルは,

\[
\begin{align*}
a'_{i+1} &= a_{i+1} - (a_{i+1}, e_1)e_1 - (a_{i+1}, e_2)e_2 - \cdots - (a_{i+1}, e_n)e_n \\
&= a_{i+1} - \sum_{j=1}^{i} (a_{i+1}, e_j)e_j \\
e_{i+1} &= a'_{i+1}/\|a'_{i+1}\|
\end{align*}
\]

(1.22)

(1.23)

により求まる。

4. 3 の操作を $i+1 = n$ まで繰り返す。
こうして規格直交基底を求める方法をグラム・シュミットの直交化と言う。シュミットの直交化により得られる基底ベクトルは, はじめの a_1 をどれに選ぶかで異なる。

[例題 1.12] シュミットの直交化の手順 3 で新しく作られる基底ベクトル e_{i+1} は $e_j (j \leq i)$ と直交することを示せ。

[例題 1.13] 線形独立な 2 つの 2 次元ベクトル $a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $a_2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$ が与えられているとき, シュミットの直交化により規格直交化した基底ベクトルの組 \(\{e_1, e_2\} \) を求める。

[例題 1.14] 線形独立な 3 つの 3 次元ベクトル $a_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $a_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $a_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ が与えられているとき,

1. シュミットの直交化により規格直交化した基底ベクトルの組 \(\{e_1, e_2, e_3\} \) を求めよ。
2. 上で求めた基底ベクトルが互いに直交していること \((e_i, e_j) = \delta_{ij} \) を確かめよ。

7
2 行列の定義と演算

2.1 行列の定義

定義 2.1. mn 個の数 a_{ij}, $(1 \leq i \leq m, 1 \leq j \leq n)$ を縦に m 行、横に n 列の表に並べて () でくくったものを (m,n) 行列と呼ぶ。これを大文字の A で表したり、成分を () でくくって (a_{ij}) と表したりする。

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \quad (2.1)$$

以下では、横の並びを「行」、縦の並びを「列」と呼ぶ。上から i 行目、右から j 列目の数 a_{ij} を (i,j) 成分と呼ぶ。以下では、行列 A の (i,j) 成分を $(A)_{ij}$ と表したり、a_{ij} と表したりすることにする。

$$ (A)_{ij} = a_{ij} \quad (2.2)$$

$m = n$ の時、n 次正方形行列、または単に n 次行列と呼ぶ。

(例) $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ は、(2,3) 行列で、(2,2) 成分 $(A)_{22} = a_{22}$ は 5 である。

m 次行ベクトル $a = (a_1, a_2, \cdots, a_n)$ は $(1,n)$ 行列、n 次列ベクトル $b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ は $(n,1)$ 行列である。

2.2 列ベクトルまたは行ベクトルによる表記

式 (2.1) において、j 列成分からなる列ベクトルを $a_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}$ とすると、行列 (2.1) は、

$$A = (a_1 \ a_2 \ \cdots \ a_n) \quad (2.3)$$

と書ける。

同様にして、i 行成分からなる行ベクトルを $a'_i = (a_{i1}, a_{i2}, \cdots, a_{in})$ とすると行列 (2.1) は、

$$A = \begin{pmatrix} a'_1 \\ a'_2 \\ \vdots \\ a'_n \end{pmatrix} \quad (2.4)$$

と書ける。
2.3 様々な行列の定義

零行列

定義 2.2. 成分が全て 0 である行列を零行列と呼び、\(O \) で表す。

\[
O = \begin{pmatrix}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{pmatrix}
\] \((2.5) \)

複素共役行列

定義 2.3. \(A = (a_{ij}) \) の各成分の複素共役をとった行列 \(\bar{A} \) を複素共役行列と呼ぶ。

\[
\bar{A} = (\bar{a}_{ij}) = \begin{pmatrix}
\bar{a}_{11} & \bar{a}_{12} & \cdots & \bar{a}_{1n} \\
\bar{a}_{21} & \bar{a}_{22} & \cdots & \bar{a}_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\bar{a}_{m1} & \bar{a}_{m2} & \cdots & \bar{a}_{mn}
\end{pmatrix}
\] \((2.6) \)

[例題 2.1] \(A = \begin{pmatrix} 1 & i \\ 1 - 2i & 2 \end{pmatrix} \) の複素共役行列 \(\bar{A} \) を求めよ。

転置行列

定義 2.4. \(A = (a_{ij}) \) の行と列を入れ替えた行列を \(\trans{A} \) で表し、転置行列と呼ぶ。

\[
\trans{A} = (a_{ji}) = \begin{pmatrix}
a_{11} & a_{21} & \cdots & a_{m1} \\
a_{12} & a_{22} & \cdots & a_{m2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1n} & a_{2n} & \cdots & a_{mn}
\end{pmatrix}
\] \((2.7) \)

定義から、\(A \) が \((m,n) \) 行列なら、\(\trans{A} \) は \((n,m) \) 行列になる。

[例題 2.2] 次の行列の転置行列を求めよ。

(1) \(A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \)

(2) \(A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \)

(3) \(a = (1,2,3) \)
2.4 行列のスカラー倍と和・差

行列のスカラー倍

定義 2.5. スカラー \(\alpha \) に対して、行列の \(\alpha \) 倍を

\[
\alpha A = (\alpha a_{ij}) = \begin{pmatrix}
\alpha a_{11} & \alpha a_{12} & \cdots & \alpha a_{1n} \\
\alpha a_{21} & \alpha a_{22} & \cdots & \alpha a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha a_{m1} & \alpha a_{m2} & \cdots & \alpha a_{mn}
\end{pmatrix}
\]

(2.8)

により定義する。特に \(\alpha = -1 \) の時、\(-1 \times A = -A \) と書く。これは行列の差を定義するときに必要になる。

[例題 2.3] \(A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \) とするとき、

(1) \(3A \) を求めよ。

(2) \(-A \) を求めよ。

行列の和と差

定義 2.6. 行列 \(A = (a_{ij}) \) と \(B = (b_{ij}) \) がともに \((m, n) \) 行列の時、行列 \(A \) と \(B \) の和、差を、

\[
A + B = (a_{ij} + b_{ij}) = \begin{pmatrix}
a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\
a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn}
\end{pmatrix}
\]

(2.9)

により定義する。

\[
A - B = (a_{ij} - b_{ij}) = \begin{pmatrix}
a_{11} - b_{11} & a_{12} - b_{12} & \cdots & a_{1n} - b_{1n} \\
a_{21} - b_{21} & a_{22} - b_{22} & \cdots & a_{2n} - b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} - b_{m1} & a_{m2} - b_{m2} & \cdots & a_{mn} - b_{mn}
\end{pmatrix}
\]

(2.10)

[例題 2.4] \(A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \), \(B = \begin{pmatrix} 3 & 1 & 2 \\ 5 & 7 & 6 \end{pmatrix} \) に対して、\(A + B \) と \(A - B \) を求めよ。

行列のスカラー倍と和・差に関する法則

定理 2.1. \(A, B, C \) を \((m, n) \) 行列、\(\alpha \) をスカラーとすると以下の法則が成り立つことが定義からわかる。

(1) \((A + B) + C = A + (B + C) \) (結合則)

(2) \(A + O = O + A = A \)
(3) \(A + (-A) = (-A) + A = O \)

(4) \(A + B = B + A \) (交換則)

(5) \(\alpha(A + B) = \alpha A + \alpha B \)

行列のスカラー倍および和と差では、スカラー同士の演算で成り立つ式は成り立つ。積の場合は成り立たない式があるので注意すること！

2.5 行列の積

定義 2.7. 行列 \(A = (a_{ij}) \) が \((m,n)\) 行列で、行列 \(B = (b_{ij}) \) が \((n,l)\) 行列の時（即ち、A の列数と B の行数が等しい時）A と B の積 \(AB = C = (c_{ij}) \) を、

\[
(AB)_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj} = c_{ij} \quad (2.11)
\]

により定義する。定義から、C 是 \((m,l)\) 行列となる。これを、解りやすいように成分で見えておくことにする。

![行列の積の例](image)

行列の積 \(AB \) の \((i,j)\) 成分 \((AB)_{ij} \) は、行列 A の \(i\) 行成分 (上式第 3 項の灰色部分) は、行列 B の \(j\) 列成分 (上式第 2 項の灰色部分) が、順番にかけて足しあわせたものになっている。

例題 2.5] 次の行列 A, B の積 \(AB \) を求めよ。

(1) \(A = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix} \)

(2) \(A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \)
例題 2.5(2) から、実列ベクトル \(\mathbf{a} \) と \(\mathbf{b} \) の内積は、行列 \('\mathbf{a} \) と \('\mathbf{b} \) の積で、\((\mathbf{a}, \mathbf{b}) = '\mathbf{a} '\mathbf{b} \) と書けることがわかる。\(\mathbf{a} \) と \(\mathbf{b} \) が複素ベクトルでも成り立つように、

\[
(a, b) = 'ab
\]

(2.13)

と拡張しておく。\(\mathbf{b} \) が実列ベクトルなら、\(\mathbf{b} = \mathbf{b} \) なので、式 (2.13) は実列ベクトルでも成り立つ。

\[
\begin{pmatrix}
a_{11} & 0 & 0 & \cdots & 0 \\
0 & a_{22} & 0 & \cdots & 0 \\
0 & 0 & a_{33} & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & a_{nn}
\end{pmatrix}
\quad \text{と}
\begin{pmatrix}
b_{11} & 0 & 0 & \cdots & 0 \\
0 & b_{22} & 0 & \cdots & 0 \\
0 & 0 & b_{33} & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & b_{nn}
\end{pmatrix}
\]の積 \(\mathbf{AB} \) を計算せよ。

定理 2.2. 行列の積に関して次の法則が成り立つ

1. \((\mathbf{A}\mathbf{B})\mathbf{C} = \mathbf{A}(\mathbf{B}\mathbf{C}) \) （結合則）
2. \(\mathbf{A}\mathbf{O} = \mathbf{O}\mathbf{A} = \mathbf{A} \)
3. \(\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}, \quad (\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C} \) （分配則）
4. \((\alpha\mathbf{A})\mathbf{B} = \alpha(\mathbf{A}\mathbf{B}) = \mathbf{A}\alpha\mathbf{B} \), ここで \(\alpha \) はスカラー。

スカラーと行列は交換する。

例題 2.7] 次の行列 \(\mathbf{A}, \mathbf{B} \) の積 \(\mathbf{AB} \) と \(\mathbf{BA} \) を求めよ。

1. \(\mathbf{A} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \), \(\mathbf{B} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} \)
2. \(\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \), \(\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \)
3. \(\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \), \(\mathbf{B} = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} \)

例題 2.6(2), (3) から、以下のことがわかる。

定理 2.3. 行列の積においては,

1. 「交換則 \(\mathbf{AB} = \mathbf{BA} \)」は必ずしも成り立たない
2. 「\(\mathbf{AB} = \mathbf{O} \Rightarrow \mathbf{A} = \mathbf{O} \) または \(\mathbf{B} = \mathbf{O} \)」は成り立たない

Coffee brake

「行列の積が交換する \(\mathbf{AB} = \mathbf{BA} \) が成り立つ」とは限らない。次に、物理数学基礎で習う「演算子が交換するとは限らない」ということに対応する。さらにこれは、量子力学の理論構築で根幹を成す不確定性原理 \(\Delta x \Delta p_x \sim h \) の数学的表現になっている。

転置行列は後々重要な役割を果たすので、転置行列の演算に関する法則をまとめておく。

12
定理 2.4. 転置行列の演算は以下の法則を満たす。

(1) \(t(\mathbf{A}) = \mathbf{A} \)
(2) \(t(\mathbf{A} + \mathbf{B}) = t\mathbf{A} + t\mathbf{B} \)
(3) \(t(\alpha\mathbf{A}) = \alpha t\mathbf{A} \), \(\alpha \) はスカラー
(4) \(t(\mathbf{AB}) = t\mathbf{B}t\mathbf{A} \)

(4) 以外は定義から自明なので、(4) だけ証明しておく。

(証明) \((t\mathbf{B}\mathbf{A})_{ij} = \sum_{k=1}^{n} (t\mathbf{B})_{ik}(t\mathbf{A})_{kj} = \sum_{k=1}^{n} b_{ki}a_{jk} = \sum_{k=1}^{n} a_{jk}b_{ki} = (\mathbf{AB})_{ji} = (t(\mathbf{AB}))_{ij} \)

以下では、特に断らない限り

2.6 単位行列

定義 2.8. \(n \) 次行列で対角成分が全て 1 で、他の成分が全て 0 である行列を \(n \) 次単位行列と呼び、\(E_n \) また

は単に \(E \) で表す。

\[
E = (e_{ij}) = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
\] と成り立つ。

(証明)

\[
(\mathbf{AE})_{ij} = \sum_{k=1}^{n} a_{ik}e_{kj} = \sum_{k=1}^{n} a_{ik}\delta_{kj} = a_{ij} = (\mathbf{A})_{ij}, \quad (\mathbf{EA})_{ij} = \sum_{k=1}^{n} e_{ik}a_{kj} = \sum_{k=1}^{n} \delta_{ik}a_{kj} = a_{ij} = (\mathbf{A})_{ij}
\]

(注) 単位行列 \(E \) は、数字の 1 に相当する行列である。そのため、「1」と書いたり、「I」を書いたりすることもある。

2.7 行列の積

定義 2.9. 行列 \(\mathbf{A} \) の \(k \) 乗を次の漸化式で定義する。

(1) \(\mathbf{A}^0 = \mathbf{E} \)
(2) \(\mathbf{A}^k = \mathbf{A} \cdot \mathbf{A}^{k-1} \), \(k \geq 1 \) の整数

単に、\(\mathbf{A}^1 = \mathbf{A}, \quad \mathbf{A}^2 = \mathbf{A} \cdot \mathbf{A}, \quad \mathbf{A}^3 = \mathbf{A} \cdot \mathbf{A}^2, \cdots \)

定理 2.6. 行列の積は以下の指数法則を満たす。

(1) \(\mathbf{A}^m \mathbf{A}^n = \mathbf{A}^{m+n} \)
(2) \((A^m)^n = A^{mn}\)

【例題 2.8】
\[A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \]

について、\(A^n (n \geq 0)\)を求めよ。

2.8 行列の跡

定義 2.10. \(n\)次正方形行列 \(A = (a_{ij})\)に対して、その対角成分の和を \(A\) の跡 (trace: トレース) と呼び、\(\text{Tr}A\)で表す。即ち、

\[
\text{Tr}A = \sum_{i=1}^{n} a_{ii}
\]

(2.16)

【例題 2.9】
行列 \(A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}\)の跡 (トレース) \(\text{Tr}A\)を求めよ。

定理 2.7. \(A, B\)を\(n\)次正方形行列とすると、トレースについて以下の法則が成り立つ。

1. \(\text{Tr}A = \text{Tr}A\)
2. \(\text{Tr}(A + B) = \text{Tr}A + \text{Tr}B\)
3. \(\text{Tr}(AB) = \text{Tr}(BA)\)
4. \(\text{Tr}(AB - BA) = 0\)

(証明) (1) と (2) は定義から明らかであろう。 (4) は (3) と (2) から簡単に導けるので、(3) だけ証明しておく。

\[
\text{Tr}(AB) = \sum_{i=1}^{n} (AB)_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik}b_{ki} = \sum_{i=1}^{n} \sum_{k=1}^{n} (tA)_{ki}(tB)_{ik} = \sum_{k=1}^{n} (tA^tB)_{kk} = \text{Tr}(tA^tB) = \text{Tr}(t(BA)) = \text{Tr}(BA)
\]
3 行列式

3.1 置換と偶奇性

定義 3.1. n 個の数字 \{1, 2, \cdots, n\} を並べ替える操作を置換と呼び、\(\sigma\) で表す。これは全部で \(n!\) 通りある。\(\sigma(1) = i_1, \sigma(2) = i_2, \cdots, \sigma(n) = i_n\) である時、以下のように表す。

\[
\sigma = \begin{pmatrix}
1 & 2 & \cdots & n \\
\quad & \quad & \ddots & \quad \\
i_1 & i_2 & \cdots & i_n
\end{pmatrix}
\] (3.1)

(例) \{1, 2, 3\} の 3 個の場合、置換は以下の 6 通りである。

\[
\sigma = \begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1 \\
1 & 3 & 2
\end{pmatrix}, \begin{pmatrix}
1 & 2 & 3 \\
1 & 3 & 2 \\
2 & 1 & 3
\end{pmatrix}, \begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 3 \\
1 & 2 & 3
\end{pmatrix}, \begin{pmatrix}
1 & 2 & 3 \\
1 & 3 & 2 \\
2 & 3 & 1
\end{pmatrix}, \begin{pmatrix}
1 & 2 & 3 \\
3 & 1 & 2 \\
3 & 2 & 1
\end{pmatrix}, \begin{pmatrix}
1 & 2 & 3 \\
3 & 1 & 2 \\
3 & 1 & 2
\end{pmatrix}
\] (3.2)

1, 2, 3 をそれぞれ何に置換するかなので、上の行が 1, 2, 3 の順に並んでいる必要はない。以下の 6 つは同じ置換である。

\[
\begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 3 & 2 \\
2 & 1 & 3
\end{pmatrix} = \begin{pmatrix}
2 & 1 & 3 \\
3 & 2 & 1
\end{pmatrix} = \begin{pmatrix}
2 & 3 & 1 \\
3 & 1 & 2
\end{pmatrix} = \begin{pmatrix}
3 & 1 & 2 \\
1 & 2 & 3
\end{pmatrix} = \begin{pmatrix}
3 & 2 & 1 \\
1 & 3 & 2
\end{pmatrix}
\]

定義 3.2. どの数字も変わらない置換を恒等置換と呼び、\(I_n\) で表す。

\[
I_n = \begin{pmatrix}
1 & 2 & \cdots & n \\
1 & 2 & \cdots & n
\end{pmatrix}
\] (3.3)

定義 3.3. 置換 \(\sigma\) の逆変換を逆置換と呼び \(\sigma^{-1}\) で表す。

\[
\sigma = \begin{pmatrix}
1 & 2 & \cdots & n \\
\quad & \quad & \ddots & \quad \\
i_1 & i_2 & \cdots & i_n
\end{pmatrix}, \sigma^{-1} = \begin{pmatrix}
i_1 & i_2 & \cdots & i_n \\
1 & 2 & \cdots & n
\end{pmatrix}
\] (3.4)

(例) \(\sigma = \begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1
\end{pmatrix}\) の逆置換は、\(\sigma^{-1} = \begin{pmatrix}
2 & 3 & 1 \\
1 & 2 & 3
\end{pmatrix}\) である。

定理 3.1. 逆置換の数も \(n\) 個であり、\(\sigma\) 全体の集合を \(S_n\) とすると、\(\sigma^{-1}\) 全体の集合も \(S_n\) である。

定理 3.2. \(n\) 個の数の置換のうち、2 つの数だけ交換する操作を互換と呼ぶ。任意の置換は互換の積 (繰り返し) で表せる。

(例) \(\sigma = \begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1
\end{pmatrix}\), \(\tau_1 = \begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 3
\end{pmatrix}\), \(\tau_2 = \begin{pmatrix}
1 & 2 & 3 \\
1 & 3 & 2
\end{pmatrix}\)，とすると、

\[
\sigma = \begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 3
\end{pmatrix} \begin{pmatrix}
1 & 2 & 3 \\
1 & 3 & 2
\end{pmatrix} = \tau_1 \tau_2
\]

上の置換 \(\sigma\) は 2 回の互換で表せることがわかる。ただし、この操作は行列の積ではないこと、また右側の演算 \((\tau_2)\) から行うことに注意すること。
置換を互換の積として表す方法は 1 通りではない。例えば、上の置換は 4 回の互換により,

\[
\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}
\]

と表せる。

定理 3.3. 偶数回の互換で表される置換を偶置換、奇数回の互換で表される置換を奇置換と呼ぶ。置換の偶奇性は互換の積として表す表し方に依らない。

(証明) \(n \) 変数の多項式,

\[
\Delta(x_1, x_2, \cdots, x_n) = \prod_{i<j}(x_j - x_i)
\]

\[
= (x_n - x_{n-1})(x_n - x_{n-2}) \cdots (x_n - x_2)(x_n - x_1)
\]

\[
= (x_{n-1} - x_{n-2}) \cdots (x_{n-1} - x_2)(x_{n-1} - x_1)
\]

\[
= \cdots
\]

\[
= (x_3 - x_2)(x_3 - x_1)
\]

\[
= (x_2 - x_1)
\]

を考える。これを \(n \) 変数の差積と呼ぶ。\(n \) 変数の互換 \(\tau \) と差積 \(\Delta \) に対して多項式 \(\Delta^\tau \) を,

\[
\Delta^\tau(x_1, x_2, \cdots, x_n) = \Delta(x_{\tau(1)}, x_{\tau(2)}, \cdots, x_{\tau(n)})
\]

と定義すると

\[
\Delta^\tau(x_1, x_2, \cdots, x_n) = -\Delta(x_1, x_2, \cdots, x_n)
\]

となることがわかる。今置換 \(\sigma \) が互換の積として 2 通りに表されたとする。

\[
\sigma = \tau_1 \tau_2 \cdots \tau_k = \rho_1 \rho_2 \cdots \rho_l
\]

すると,

\[
\Delta^\sigma(x_1, x_2, \cdots, x_n) = (-1)^k \Delta(x_1, x_2, \cdots, x_n) = (-1)^l \Delta(x_1, x_2, \cdots, x_n)
\]

となり, \((-1)^k = (-1)^l\) 即ち \(k \) と \(l \) の偶奇性は一致しなければいけない。

[例題 3.1] 置換 \(\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix} \) を互換の積で表し、偶置換か奇置換か調べよ。

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coffee Break
右図のように \(4 \times 4 \) のマス目に 1 から 15 までの数字が書かれたコマを置いて、空いているマス目を利用して順番に並べ替えるゲームをしたことがある人は多いだろう。特に右は右 14 と 15 を入れ替えたもので 19 世紀末には 1000 ドル（今の価値で 250 万円ほど）の懸賞がかけられた。しかし、それ以前にこの問題は解けないことが数学の論文で示されていたのだが。数字をランダムに並べた場合、約半分は解くことが出来ない。置換の偶奇性を考えることは簡単に理解できる。
3.2 行列式の定義

定義 3.4. n 次行列

\[
A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\]

に対して、

\[
\det A = |A| = \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix} = \sum_{\sigma \in S_n} \text{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}
\quad (3.5)
\]

で定義される数を行列 A の行列式と呼ぶ。ここで、\(\sigma \in S_n \) は \(\{1, 2, \cdots, n\} \) に対する全ての置換にわたる和を取ることを意味する。

行列 A が列ベクトル \(a_1, a_2, \cdots, a_n \)（ここで、\(a_i = \begin{pmatrix} a_{i1} \\ a_{i2} \\ \vdots \\ a_{in} \end{pmatrix} \)）によって、\(A = (a_1 a_2 \cdots a_n) \) と書ける時、

その行列式を

\[
|A| = \det A = \det(a_1 a_2 \cdots a_n)
\quad (3.6)
\]

と書く。

同様にして、行列 A が列ベクトル \(a_1', a_2', \cdots, a_n' \)（ここで、\(a_i' = (a_{i1}, a_{i2}, \cdots, a_{in}) \)）によって、\(A = \begin{pmatrix} a_1' \\ a_2' \\ \vdots \\ a_n' \end{pmatrix} \) と書ける時、その行列式を

\[
|A| = \det A = \det\begin{pmatrix} a_1' \\ a_2' \\ \vdots \\ a_n' \end{pmatrix}
\quad (3.7)
\]

と書く。

（例）（2, 2）行列の行列式

\[
A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}
\]

の行列式を求める。\(\{1, 2\} \) に対する置換は、\(\sigma_1 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \) と \(\sigma_2 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \) の 2 つで、
その偶奇性は，sgn(σ₁) = 1，sgn(σ₂) = -1である。従って行列式は定義式 (3.5) より，

\[|A| = \sum_{\sigma \in S_n} \text{sgn}(\sigma)a_{1\sigma(1)}a_{2\sigma(2)} \]

\[= \text{sgn}(\sigma_1)a_{1\sigma_1(1)}a_{2\sigma_1(2)} + \text{sgn}(\sigma_2)a_{1\sigma_2(1)}a_{2\sigma_2(2)} \]

\[= (+1)a_{11}a_{22} + (-1)a_{12}a_{21} = a_{11}a_{22} - a_{12}a_{21} \]

即ち，

\[\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} \] \hspace{1cm} (3.8)

この結果は記憶すること。覚え方は右図のたすき掛けを使うと良い。左上から右下にかけてのかけ算はプラス、右上から左下にかけてのかけ算はマイナスになる。

例題 3.2] 行列式 \[\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \] の値を計算せよ。

（例）(3,3) 行列の行列式

\[A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \] の行列式を求める。{1,2,3} に対する置換は式 (3.2) で求めたように，σ₁ = (1 2 3)，σ₂ = (1 3 2)，σ₃ = (1 3 2)，σ₄ = (1 2 3)，σ₅ = (1 2 3)，σ₆ = (1 2 3)

の 6 通りで，その偶奇性は，sgn(σ₁) = 1，sgn(σ₂) = -1，sgn(σ₃) = 1，sgn(σ₄) = -1，sgn(σ₅) = -1，sgn(σ₆) = 1 である。従って行列式は定義式 (3.5) より，

\[|A| = \sum_{\sigma \in S_n} \text{sgn}(\sigma)a_{1\sigma(1)}a_{2\sigma(2)}a_{3\sigma(3)} \]

\[= \text{sgn}(\sigma_1)a_{1\sigma_1(1)}a_{2\sigma_1(2)}a_{3\sigma_1(3)} + \text{sgn}(\sigma_2)a_{1\sigma_2(1)}a_{2\sigma_2(2)}a_{3\sigma_2(3)} + \text{sgn}(\sigma_3)a_{1\sigma_3(1)}a_{2\sigma_3(2)}a_{3\sigma_3(3)} \]

\[+ \text{sgn}(\sigma_4)a_{1\sigma_4(1)}a_{2\sigma_4(2)}a_{3\sigma_4(3)} + \text{sgn}(\sigma_5)a_{1\sigma_5(1)}a_{2\sigma_5(2)}a_{3\sigma_5(3)} + \text{sgn}(\sigma_6)a_{1\sigma_6(1)}a_{2\sigma_6(2)}a_{3\sigma_6(3)} \]

\[= (+1)a_{11}a_{22}a_{33} + (-1)a_{11}a_{23}a_{32} + (+1)a_{12}a_{23}a_{31} \]

\[+ (-1)a_{12}a_{21}a_{33} + (+1)a_{13}a_{22}a_{31} + (+1)a_{13}a_{21}a_{32} \]

即ち，

\[\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{33} - a_{13}a_{22}a_{31} - a_{23}a_{12}a_{31} - a_{33}a_{21}a_{12} \] \hspace{1cm} (3.9)

この結果は記憶すること。覚え方は右図のたすき掛け (3 次の場合是「サラスの方法」という名前がついている) を使うと良い。左上から右下にかけてのかけ算はプラス、右上から左下にかけてのかけ算はマイナスになる。ただし、「たすき掛け」の方法は 4 次以上では使えない！
標準行列式を計算する方法 1

| 行列式 | 1 1
| 2 2
| 1 3

3.3 行列式の幾何学的意味

3.4 行列式的性質

定理 3.4. 転置行列の行列式は元の行列式に等しい。即ち，

\[|A^T| = |A| \] (3.10)

定理 3.5. ある行の成分を全て \(\alpha \) 倍した行列の行列式は元の行列の行列式的 \(\alpha \) 倍となる。即ち，

\[
\det \begin{pmatrix}
\alpha & a_1' \\
\alpha & a_2' \\
\vdots & \vdots \\
\alpha & a_n'
\end{pmatrix}
= \alpha \det \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
= \alpha \det \begin{pmatrix}
a_1' \\
a_2' \\
\vdots \\
a_n'
\end{pmatrix}
\] (3.11)
式 (3.11) の左辺 = \(\sum_{\sigma \in S_n} \text{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)} \)
= \(\alpha \sum_{\sigma \in S_n} \text{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)} \) = 式 (3.11) の右辺

\(\alpha = 0 \) の特殊な場合として次の系が成り立つ。

定理 3.6.
ある行の成分が全て 0 である行列の行列式は 0 である。即ち,

\[
\begin{vmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{i1} + b_{i1} & a_{i2} + b_{i2} & \cdots & a_{in} + b_{in} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix} = 0
\]

(3.12)

定理 3.7.

\[
\begin{vmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{i1} & a_{i2} & \cdots & a_{in} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix} = \text{det}
\begin{vmatrix}
 a'_{11} \\
 a'_{22} \\
 \vdots \\
 a'_{i1} + b'_{i1} \\
 \vdots \\
 a'_{n1} \quad a'_{n2} \quad \cdots \quad a'_{nn}
\end{vmatrix}
+ \text{det}
\begin{vmatrix}
 b_{11} & b_{12} & \cdots & b_{1n} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{n1} & b_{n2} & \cdots & b_{nn}
\end{vmatrix}
\]

(3.13)

(証明)
式 (3.13) の左辺 = \(\sum_{\sigma \in S_n} \text{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots (a_{i\sigma(i)} + b_{i\sigma(i)}) \cdots a_{n\sigma(n)} \)
= \(\sum_{\sigma \in S_n} \text{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{i\sigma(i)} \cdots a_{n\sigma(n)} \)
+ \(\sum_{\sigma \in S_n} \text{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots b_{i\sigma(i)} \cdots a_{n\sigma(n)} \) = 式 (3.13) の右辺

定理 3.5 と定理 3.7 の性質を合わせて行列の行に関する多重線形性と呼ぶ。定理 3.4 より、行について成り立つ性質は列についても成り立つので、定理 3.5 から定理 3.7 に対応して、系 3.8 から系 3.10 が成り立つ。
系 3.8. ある列の成分を全て \(\alpha \) 倍した行列の行列式は元の行列の行列式の \(\alpha \) 倍となる。即ち，

\[
\det(\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\
\vdots & \vdots & & \vdots & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn}
\end{vmatrix}) = \alpha \det(\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\
\vdots & \vdots & & \vdots & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn}
\end{vmatrix})
\]

(3.14)

系 3.9. ある列の成分が全て 0 である行列の行列式は 0 である。即ち，

\[
\det(\begin{vmatrix}
a_{11} & a_{12} & \cdots & 0 & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & 0 & \cdots & a_{2n} \\
\vdots & \vdots & & \vdots & & \vdots \\
a_{n1} & a_{n2} & \cdots & 0 & \cdots & a_{nn}
\end{vmatrix}) = 0
\]

(3.15)

系 3.10.

\[
\det(\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1i} + b_{1i} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2i} + b_{2i} & \cdots & a_{2n} \\
\vdots & \vdots & & \vdots & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{ni} + b_{ni} & \cdots & a_{nn}
\end{vmatrix}) = \det(\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\
\vdots & \vdots & & \vdots & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn}
\end{vmatrix}) + \det(\begin{vmatrix}
a_{11} & a_{12} & \cdots & b_{1i} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & b_{2i} & \cdots & a_{2n} \\
\vdots & \vdots & & \vdots & & \vdots \\
a_{n1} & a_{n2} & \cdots & b_{ni} & \cdots & a_{nn}
\end{vmatrix})
\]

(3.16)

系 3.8 と系 3.10 の性質を合わせて 行列の列に関する多重線形性と呼ぶ。
定理 3.11. ある行列において任意の2列を入れ替えた行列の行列式は、元の行列の行列式の符号を変えたものになる（行列の行に関する交換性）。成分で書き下すと、

\[
\begin{vmatrix}
 a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1j} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2j} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nj} & \cdots & a_{nn}
\end{vmatrix}
= - \begin{vmatrix}
 a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1j} & \cdots & a_{1n} \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nj} & \cdots & a_{nn}
\end{vmatrix}
= -\text{det}(\mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_j \cdots \mathbf{a}_n) \quad (3.17)
\]

（証明）
i 番目と j 番目を入れ替える置換を \(\tau = \begin{pmatrix} 1 & 2 & \cdots & i & \cdots & j & \cdots & n \end{pmatrix} \) とすると、

\[
\text{det}(\mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_j \cdots \mathbf{a}_n) = \text{det}(\mathbf{a}_{\tau(1)} \mathbf{a}_{\tau(2)} \cdots \mathbf{a}_{\tau(i)} \cdots \mathbf{a}_{\tau(j)} \cdots \mathbf{a}_{\tau(n)})
= \sum_{\sigma \in S_n} \text{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(1)} = \sum_{\sigma \in S_n} \text{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}
= -\text{det}(\mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_i \cdots \mathbf{a}_j \cdots \mathbf{a}_n)
\]

系 3.12. 行列の2つの列が等しければ \(\text{det}A = 0 \) である。成分で書き下すと、

\[
\begin{vmatrix}
 a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1j} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2j} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nj} & \cdots & a_{nn}
\end{vmatrix}
= 0 \quad (3.18)
\]

（証明）

\[
\text{det}(\mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_i \cdots \mathbf{a}_i \cdots \mathbf{a}_n) = -\text{det}(\mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_i \cdots \mathbf{a}_n), \quad \text{det}(\mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_i \cdots \mathbf{a}_i \cdots \mathbf{a}_n) = 0
\]

定理 3.4 より、行について成り立つ性質は列についても成り立つので、定理 3.11 と系 3.12 に対応して、系 3.13 と系 3.14 が成り立つ。
定理 3.13. ある行列において任意の 2 行を入れ替えた行列の行列式は、元の行列の行列式の符号を変えたものになる (行列の行に関する交換性). 成分で書き下すと,

\[
\begin{vmatrix}
 a'_{11} & a'_{12} & \cdots & a'_{1n} \\
 a'_{21} & a'_{22} & \cdots & a'_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a'_{n1} & a'_{n2} & \cdots & a'_{nn}
\end{vmatrix}
= \det
\begin{vmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}
\]

\[= -\det
\begin{vmatrix}
 a'_{11} & a'_{12} & \cdots & a'_{1n} \\
 a'_{21} & a'_{22} & \cdots & a'_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a'_{n1} & a'_{n2} & \cdots & a'_{nn}
\end{vmatrix}
\] (3.19)

系 3.14. 行列の 2 つの行が等しかければ \(\det A = 0 \) である. 成分で書き下すと,

\[
\begin{vmatrix}
 a'_{11} & a'_{12} & \cdots & a'_{1n} \\
 a'_{21} & a'_{22} & \cdots & a'_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a'_{n1} & a'_{n2} & \cdots & a'_{nn}
\end{vmatrix}
= 0
\] (3.20)

行列の列に関する多重線形性 (系 3.8 と系 3.10) と交換性 (系 3.12) から次の系が成り立つ.

系 3.15. 行列 \(A \) ある列に他の列の定数倍を加えて得られる行列の行列式は、もとの行列の行列式に等しい. 成分で表すと,

\[
\det(a_1a_2\cdots a_i + \alpha a_j \cdots a_n) = \det(a_1a_2\cdots a_i \cdots a_n)
\]

(証明)

\[
\det(a_1a_2\cdots a_i + \alpha a_j \cdots a_n) = \det(a_1a_2\cdots a_i \cdots a_n) + \det(a_1a_2\cdots \alpha a_j \cdots a_n) = \det(a_1a_2\cdots a_i \cdots a_j \cdots a_n)
\]

行列の行に関する多重線形性 (定理 3.5 と定理 3.7) と交換性 (系 3.14) から次の系が成り立つ.

23
例題 3.6] 次の行列式が 0 になることを示せ。

(1) \(\det A = \det(a_1a_2a_3a_4) = \begin{vmatrix} -1 & 0 & -1 & 1 \\ 0 & -1 & 0 & 0 \\ 2 & 1 & 2 & 0 \\ 1 & 0 & 1 & -2 \end{vmatrix} \)

(2) \(\det A = \det \begin{pmatrix} a'_1 \\ a'_2 \\ a'_3 \\ a'_4 \end{pmatrix} = \begin{vmatrix} 1 & 2 & 0 & 1 \\ -1 & 0 & 1 & -2 \\ 2 & 0 & 2 & 0 \\ 1 & 0 & 1 & 1 \end{vmatrix} \)

(3) \(\det A = \det(a_1a_2a_3a_4) = \begin{vmatrix} -1 & 0 & 1 & -1 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 2 \end{vmatrix} \)

定理 3.17. 行列 \(A = (a_1, a_2, \cdots, a_n) \) で列ベクトルの組 \(\{a_1, a_2, \cdots, a_n\} \) が線形独立ではない時，
\(\det A = 0 \) である。

(証明) \(\{a_1, a_2, \cdots, a_n\} \) が線形独立でなければ，\(\alpha_1a_1 + \alpha_2a_2 + \cdots + \alpha_n a_n = 0 \) を満たす自明では無い解
\((\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0 \) 以外の解) が存在する。\(\alpha_1 \neq 0 \) とするとき，
\[\alpha_1 \frac{a_1}{\alpha_1} + \alpha_2 \frac{a_2}{\alpha_2} + \cdots + \alpha_i \frac{a_i}{\alpha_i} + \cdots + \alpha_n \frac{a_n}{\alpha_n} = 0 \]
より，
\[\det(a_1a_2a_3 \cdots a_n) = \det \left(a_1a_2 \cdots a_i + \alpha_1 \frac{a_1}{\alpha_1} + \alpha_2 \frac{a_2}{\alpha_2} + \cdots + \alpha_i \frac{a_i}{\alpha_i} + \cdots + \alpha_n \frac{a_n}{\alpha_n} \cdots a_n \right) \]
3.5 余因子と行列式的展開

定義 3.5. \(n \) 次正方行列

\[A = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1j-1} & a_{1j} & a_{1j+1} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2j-1} & a_{2j} & a_{2j+1} & \cdots & a_{2n} \\
 \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
 a_{i-11} & a_{i-12} & \cdots & a_{i-1j-1} & a_{i-1j} & a_{i-1j+1} & \cdots & a_{i-1n} \\
 a_{i1} & a_{i2} & \cdots & a_{ij-1} & a_{ij} & a_{ij+1} & \cdots & a_{in} \\
 a_{i+11} & a_{i+12} & \cdots & a_{i+1j-1} & a_{i+1j} & a_{i+1j+1} & \cdots & a_{i+1n} \\
 \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nj-1} & a_{nj} & a_{nj+1} & \cdots & a_{nn}
\end{bmatrix} \]

(3.24)
から i 行と j 列 (上の灰色の十字部分) を除いてできる $n - 1$ 次正方行列の行列式

$$
d_{ij} = \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1j-1} & a_{1j+1} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2j-1} & a_{2j+1} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{i-11} & a_{i-12} & \cdots & a_{i-1j-1} & a_{i-1j+1} & \cdots & a_{i-1n} \\
a_{i+11} & a_{i+12} & \cdots & a_{i+1j-1} & a_{i+1j+1} & \cdots & a_{i+1n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nj-1} & a_{nj+1} & \cdots & a_{nn}
\end{vmatrix}
$$

(3.25)

に $(-1)^{i+j}$ をかけたものを A の (i,j) 余因子と呼び、Δ_{ij} と書く。

$$
\Delta_{ij} = (-1)^{i+j}d_{ij} = (-1)^{i+j}
$$

(3.26)

定理 3.20.

$$
\begin{vmatrix}
a_{11} & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix} = a_{11} \begin{vmatrix}
a_{22} & \cdots & a_{2n} \\
\vdots & \ddots & \vdots \\
a_{n2} & \cdots & a_{nn}
\end{vmatrix} = a_{11} \Delta_{11}
$$

(3.27)

(証明)

$$
|A| = \sum_{\sigma \in S_n} \text{sgn}(\sigma)a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}
$$
において、$a_{ij} = a_{11}\delta_{ij}$ なので $\sigma(1) = 1$ 以外の置換に対して $a_{1\sigma(1)}$ は0になる。そこで、σ' を $\{2, 3, \cdots, n\}$ から $\{2, 3, \cdots, n\}$ への置換 $\sigma' = \begin{pmatrix} 2 & 3 & \cdots & n \\ \sigma'(2) & \sigma'(3) & \cdots & \sigma'(n) \end{pmatrix}$
とすると、$|A| = \sum_{\sigma' \in S_{n-1}} \text{sgn}(\sigma')a_{11}a_{2\sigma'(2)}\cdots a_{n\sigma'(n)} = a_{11}\Delta_{11}$

定理 3.4 より、行について成り立つ性質は列についても成り立つので次の定理が成り立つ。

定理 3.21.

$$
\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
0 & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & a_{n2} & \cdots & a_{nn}
\end{vmatrix} = a_{11} \begin{vmatrix}
a_{22} & \cdots & a_{2n} \\
\vdots & \ddots & \vdots \\
a_{n2} & \cdots & a_{nn}
\end{vmatrix} = a_{11} \Delta_{11}
$$

(3.28)
例題 3.7 以下の行列式的値を求めよ。

\[
\begin{vmatrix}
 a_{11} & 0 & 0 & \cdots & 0 \\
 0 & a_{22} & 0 & \cdots & 0 \\
 0 & 0 & a_{33} & \ddots & \vdots \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 0 & a_{nn}
\end{vmatrix}
\]

(1)

\[
\begin{vmatrix}
 a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
 0 & a_{22} & a_{23} & \cdots & a_{2n} \\
 0 & 0 & a_{33} & \cdots & a_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 0 & a_{nn}
\end{vmatrix}
\]

(2)

定理 3.20 を一般化した形として、次が成り立つ。

\[
\begin{vmatrix}
 0 & 0 & \cdots & 0 & a_{1j} & 0 & 0 & 0 \\
 a_{21} & a_{22} & \cdots & a_{2j-1} & a_{2j} & a_{2j+1} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nj-1} & a_{nj} & a_{nj+1} & \cdots & a_{nn}
\end{vmatrix}
\]

= \(a_{1j} \Delta_{1j} \) \hspace{1cm} (3.29)

(証明)

\[
\begin{vmatrix}
 0 & 0 & \cdots & 0 & a_{1j} & 0 & 0 & 0 \\
 a_{21} & a_{22} & \cdots & a_{2j-1} & a_{2j} & a_{2j+1} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nj-1} & a_{nj} & a_{nj+1} & \cdots & a_{nn}
\end{vmatrix}
\]

= \((-1)^{j-1} a_{1j} \Delta_{1j}\)

= \((-1)^{j+1} a_{1j} \Delta_{1j}\) \hspace{1cm} (3.30)

定理 3.4 より、行について成り立つ性質は列についても成り立つので定理 3.21 を一般化した次の定理が成り立つ。

\[
\begin{vmatrix}
 0 & a_{12} & \cdots & a_{1n} \\
 0 & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & a_{i-12} & \cdots & a_{i-1n} \\
 a_{i1} & a_{i2} & \cdots & a_{in} \\
 0 & a_{i+12} & \cdots & a_{i+1n} \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & a_{n2} & \cdots & a_{nn}
\end{vmatrix}
\]

= \(a_{1j} \Delta_{1j} \) \hspace{1cm} (3.30)

定理 3.22 または定理 3.23 を用いると、以下の式を得る。
定理 3.24. 行列式の余因子による展開

\[
|A| = a_{11} \Delta_{11} + a_{12} \Delta_{12} + \cdots + a_{1n} \Delta_{1n} = \sum_{k=1}^{n} a_{1k} \Delta_{1k}
\] (3.31)

\[
|A| = a_{11} \Delta_{11} + a_{21} \Delta_{21} + \cdots + a_{n1} \Delta_{n1} = \sum_{k=1}^{n} a_{k1} \Delta_{k1}
\] (3.32)

(証明)

定理 3.4 より、行について成り立つ性質は列についても成り立つので、式 (3.32) だけ証明しておく。

\[
\begin{vmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix} =
\begin{vmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 0 & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & a_{n2} & \cdots & a_{nn}
\end{vmatrix}
\begin{vmatrix}
 a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}
\begin{vmatrix}
 a_{11} \Delta_{11} + a_{21} \Delta_{21} + \cdots + a_{n1} \Delta_{n1}
\end{vmatrix}
\]

[例題 3.8] 次の行列式の値を計算せよ。

\[
\begin{vmatrix}
 1 & 2 & -1 & 2 \\
 -1 & -1 & 2 & 1 \\
 1 & 3 & 1 & 2 \\
 2 & 1 & -1 & 3
\end{vmatrix}
\]

式 (3.32) は行列式を 1 列目について余因子で展開したものであるが、j 列で展開することを考えよう。
\[
\det(a_1, a_2, \cdots, a_{j-1}, a_j, a_{j+1}, \cdots, a_n) = (-1)^{j-1} \det(a_{j1}, a_{j2}, \cdots, a_{j1}, a_{j+1}, \cdots, a_{nn})
\]

ことに注意すると、

\[
\begin{vmatrix}
 a_{1j} & a_{11} & \cdots & a_{1j-1} & a_{1j+1} & \cdots & a_{1n} \\
 a_{2j} & a_{21} & \cdots & a_{2j-1} & a_{2j+1} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 a_{nj} & a_{n1} & \cdots & a_{nj-1} & a_{nj+1} & \cdots & a_{nn}
\end{vmatrix}
\]

\[
= (-1)^{j-1}\{(\det(a_{1j}d_{1j} + (-1)^{j-1}a_{2j}^2d_{2j} + \cdots + (-1)^n a_{nj}d_{nj})
\]

従って、

\[
|A| = a_{1j} \Delta_{1j} + a_{2j} \Delta_{2j} + \cdots + a_{nj} \Delta_{nj}
\]

が成り立つ。ここで、i 列目 (a_i) と j 列目 (a_j) が等しい時、定理 3.18 より、

\[
|A| = \det(a_1a_2 \cdots a_i \cdots a_j \cdots a_n) = \det(a_1a_2 \cdots a_i \cdots a_i \cdots a_n) = 0
\]

この時、a_{kj} = a_{ki} より、式 (3.33) は、

\[
a_{1i} \Delta_{1j} + a_{2i} \Delta_{2j} + \cdots + a_{ni} \Delta_{nj} = 0
\]

(3.34)
となる。式 (3.33) と式 (3.34) をまとめると、

$$a_{1i} \Delta_{1j} + a_{2i} \Delta_{2j} + \cdots + a_{ni} \Delta_{nj} = |A| \delta_{ij}$$

となる。定理 3.4 より行と列を入れ替えても同様の関係式が成り立つので両方まとめて書くと以下の定理が成り立つ。

定理 3.25.

$$a_{1i} \Delta_{1j} + a_{2i} \Delta_{2j} + \cdots + a_{ni} \Delta_{nj} = \sum_{k=1}^{n} a_{ki} \Delta_{kj} = |A| \delta_{ij} \quad (3.35)$$

$$a_{1j} + a_{2j} + \cdots + a_{nj} = \sum_{k=1}^{n} a_{ik} \delta_{jk} = |A| \delta_{ij} \quad (3.36)$$

これらは、式 (3.31) と式 (3.32) の結果を含むことがわかる。
4 逆行列

4.1 逆行列の定義

定義 4.1. 正方行列 A に対して $AB = BA = E$ を満たす正方行列 B が存在するとき，A は正則行列であるという。また，この時の B を A の逆行列と呼び A^{-1} で表す。

例

$A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$ に対して $B = \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix}$ とすると，$AB = BA = E$ より，A は正則行列で B は A の逆行列 A^{-1} である。

定理 4.1. A の逆行列は存在すれば唯一である。

（証明）

B，C がともに A の逆行列であるとすると，$AB = BA = E$ かつ $AC = CA = E$ が成り立つ。従って，$C = CE = CBA = (CA)B = EB = B$ より逆行列は唯一である。

定理 4.2. A, B が正則行列ならば，A^{-1}，$AB，^tA$ が正則行列でそれぞれの逆行列は，

（1）$(A^{-1})^{-1} = A$

（2）$(AB)^{-1} = B^{-1}A^{-1}$

（3）$(^tA)^{-1} = (^t(A^{-1}))$

である。これらは重要なので記憶すること。

例題 4.1 定理 4.2 を証明せよ。

例題 4.2 以下の行列の逆行列を求めよ。

(1) $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (2) $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$

4.2 2 次正方行列の逆行列

定理 4.3. $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ の逆行列は，$|A| = ad - bc \neq 0$ の時，

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$ (4.1)

で与えられる。これは重要なので記憶すること。

例題 4.3 定理 4.3 を証明せよ。

例題 4.4 行列 $A = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$ の逆行列を求めよ。

例題 4.5 次の連立方程式を解け。

$$\begin{cases} 2x + 5y = 1 \\ x + 3y = 1 \end{cases}$$
4.3 一般の逆行列

定義 4.2. 3.5 章で定義した余因子を用いて \((i,j)\) 成分 \(\bar{a}_{ij}\) が \(\Delta_{ji}\)(添字の順番に注意) で与えられる行列 \(\bar{A} = (\bar{a}_{ij})\) で \(A\) の余因子行列と呼ぶ。即ち、

\[
\bar{A} = (\bar{a}_{ij}) = \begin{pmatrix}
\Delta_{11} & \Delta_{21} & \cdots & \Delta_{n1} \\
\Delta_{12} & \Delta_{22} & \cdots & \Delta_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
\Delta_{1n} & \Delta_{2n} & \cdots & \Delta_{nn}
\end{pmatrix} = \begin{pmatrix}
\Delta_{11} & \Delta_{12} & \cdots & \Delta_{1n} \\
\Delta_{21} & \Delta_{22} & \cdots & \Delta_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\Delta_{n1} & \Delta_{n2} & \cdots & \Delta_{nn}
\end{pmatrix}
\]

(4.2)

定理 4.4. \(n\) 次行列 \(A\) について、次の 2 つは同値である。

1. \(A\) は正則行列である。
2. \(|A| \neq 0\) のとき、\(A\) の逆行列 \(A^{-1}\) は、

\[
A^{-1} = \frac{1}{|A|} \bar{A} = \frac{1}{|A|} \begin{pmatrix}
\Delta_{11} & \Delta_{21} & \cdots & \Delta_{n1} \\
\Delta_{12} & \Delta_{22} & \cdots & \Delta_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
\Delta_{1n} & \Delta_{2n} & \cdots & \Delta_{nn}
\end{pmatrix}
\]

(4.4)

で与えられる。

（証明）

(1) ⇒ (2) \(A\) は正則なので、\(A^{-1}\) が存在して、\(AA^{-1} = E\) これを行列式を取ると、\(|AA^{-1}| = |A||A^{-1}| = |E| = 1\). ⇒ \(|A| \neq 0\)

(2) ⇒ (1) \(A\) の余因子行列を \(\bar{A} = (a_{ij})\) とすると、\(a_{ij} = \Delta_{ji}\) と式 (3.36) より、

\[
(A\bar{A})_{ij} = \sum_{k=1}^{n} a_{ik} \bar{a}_{kj} = \sum_{k=1}^{n} a_{ik} \Delta_{jk} = |A| \delta_{ij} \therefore A\bar{A} = |A|E
\]

また、式 (3.35) より、\((A\bar{A})_{ij} = \sum_{k=1}^{n} \bar{a}_{ik} a_{kj} = \sum_{k=1}^{n} a_{kj} \Delta_{ki} = |A| \delta_{ij} \therefore \bar{A}A = |A|E

従って、\(|A| \neq 0\) ならば、\(AA^{-1} = A^{-1}A = E\) となる \(A^{-1} = \frac{1}{|A|} \bar{A}\) が存在する。

例題 4.6 行列 \(A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 6 & 3 \\ -2 & -5 & -2 \end{pmatrix}\) の逆行列を求めよ。
5 1次変換と行列

5.1 1次変換の定義

定義 5.1. ベクトル空間からベクトル空間への写像 \(x' = f(x) \) が

(1) \(f(x_1 + x_2) = f(x_1) + f(x_2) \)

(2) \(f(\alpha x) = \alpha f(x) \)

を満たす時，\(f \) を線形写像と呼ぶ．特に，ベクトル \(x' \) と \(x \) の次元が等しい時，1次変換と呼ぶ．

\(n \) 次元ベクトル空間の1次変換は \(n \)次行列を用いて，

\[x' = Ax \quad (5.1) \]

と表すことができる．この \(A \) を1次変換の表現行列と呼ぶ．

\(x' \) に対して \(x \) を与える変換があれば，それを逆変換と呼ぶ．逆変換の表現行列は逆行列 \(A^{-1} \) で与えられる．

\[x = A^{-1}x' \quad (5.2) \]

[例題5.1]

(1) \(A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \) で表される1次変換により，点 \(P(0,0) \)，\(Q(1,0) \)，\(R(0,1) \)，\(S(1,1) \) が点 \(P' \)，\(Q' \)，\(R' \)，\(S' \) に移るとするとき，それそれぞれの座標を求めよ．

(2) 上の1次変換により，右図のPQRSで囲まれた領域がどのような領域に変換されるか示せ．

[例題5.2]

(1) 表現行列 \(A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \) で表される1次変換で，\(x^2 + y^2 = 1 \) はどのような図形に変換されるか求めよ．

(2) \(A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \) の逆行列 \(A^{-1} \) を求めよ．

(3) \(A^{-1} \) により表現される1次変換で，\(\frac{x^2}{2} + y^2 = 1 \) はどのような図形に変換されるか求めよ．

5.2 1次変換の例

以下に2次元の重要な1次変換の例を示す．
5.2.1 相似変換
原点を中心に α 倍する変換は，$x' = \alpha x$, $y' = \alpha y$ と書ける．行列で表現すると，

$$x' = \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \alpha \mathbf{E} \mathbf{x} = \mathbf{A} \mathbf{x} \quad (5.3)$$

逆変換 A^{-1} は，

$$A^{-1} = \begin{pmatrix} \frac{1}{\alpha} & 0 \\ 0 & \frac{1}{\alpha} \end{pmatrix} = \frac{1}{\alpha^2} \mathbf{E} \quad (5.4)$$

5.2.2 対称変換

(1) y 軸に関して線対称な変換は，$x' = -x$, $y' = y$ と書ける．行列で表現すると，

$$x' = \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{A} \mathbf{x} \quad (5.5)$$

(2) 原点に関して点対称な変換は，$x' = -x$, $y' = -y$ と書ける．行列で表現すると，

$$x' = \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{A} \mathbf{x} \quad (5.6)$$

(3) 直線 $y = x$ に関して線対称な変換は，$x' = y$, $y' = x$ と書ける．行列で表現すると，

$$x' = \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{A} \mathbf{x} \quad (5.7)$$

(1) から (3) の逆変換が元の変換と等しいことは幾何学的に明らかだろう．逆行列を計算しても元の行列に等しい．

【例題 5.3】$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ で表現される変換により，$\left(\frac{x}{2}\right)^2 + y^2 = 1$ はどのような図形に変換されるか示せ．
5.2.3 回転

原点を中心にして反時計回りに θ 回転する変換は,

\[
x' = \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}
\]

で与えられる。

(証明)

\[e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]

とすると, \(x = x e_1 + y e_2 \)

1 次変換の線形性から, \(x' = Ax = A(x e_1 + y e_2) = x A e_1 + y A e_2 \) 従って, 原点を中止として反時計回りに θ 回転させた時に, \(e_1 \) と \(e_2 \) がそれぞれどこに移されるかを見れば良い。右図から,

\[e_1' = A e_1 = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \quad e_2' = A e_2 = \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix} \]

従って,

\[
x' = \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}
\]

[例題 5.4] \(A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \) の逆行列 \(A^{-1} \) を求めよ。

[考察] 原点に関して反時計回りに θ の回転をする表現行列の逆行列は \(-\theta \) の回転行列になることがわかる。これは幾何学的に妥当なことである。

[例題 5.5] 反時計回りに \(\beta \) 回転し続けて \(\alpha \) 回転するのは、一度に \(\alpha + \beta \) 回転するのと同じであることを利用して 3 角関数の加法定理を導く。

[例題 5.6] 以下の問いに答えよ。

(1) \(5x^2 + 6xy + 5y^2 = 8 \) を原点に関して反時計回りに \(\pi \) 回転して得られる方程式を求めよ。

(2) (1) の結果から, \(5x^2 + 6xy + 5y^2 = 8 \) のグラフの概形を描け。

[考察] 原点に関して反時計回りに図形を θ 回転させることは、座標軸を逆向き (時計回り) に θ 回転させるのと同じである。

5.3 ユニタリ変換とユニタリ行列

5.3.1 隣伴行列

定義 5.2. 'A を \(A \) の隣伴行列と呼び, \(A^* \) で表わす。即ち,

\[
A^* = \dagger A
\]
定理 5.1. 随伴行列は以下の性質を満たす。

(1) 任意の n 次複素ベクトル x, y に対して,

$$ (Ax, y) = (x, A y) $$

が成り立つ。

(2) 逆に、$(Ax, y) = (x, By)$ が成り立てば、$B = ^tA$ である。

(3) $(AB)^* = B^*A^*$

(証明)

(1) 内積を行列の積で表す式 (2.13) と転置行列の性質定理 2.4(4) より,

$$ (Ax, y) = ^t(Ax)g = ^tA^t x y = ^t x (A y) = (x, A^t y) $$

(2) 任意の x と y について成り立つので、$x = e_j, y = e_i$ とする。ただし、e_i は i 番目の成分だけが 1 の単位ベクトルとする。すると、$(Ae_j, e_i) = a_{ij}$ 一方、$(e_j, Be_i) = b_{ji}$ より $a_{ij} = b_{ji}$ 即ち $B = ^tA$

(3) $(AB)^* = ^t(AB) = ^tB^t A^t = B^*A^*$

5.3.2 ユニタリ行列

5.2 章で見てきた対称操作や回転といった 1 次変換では図形の形は保たれる。図形の形が変わらないためには、任意のベクトル x に対して変換の前後でノルムが変わらない必要がある。即ち、$|x| = |Ax|$。これは $(Ax, Ax) = (x, A^*Ax) = (x, x)$ とかるので結局 $A^*A = E$ を満たす必要がある。そこで、

定義 5.3.

$$ A^*A = E $$

を満たす正方行列 A をユニタリ行列と呼ぶ。特に A が実行列 ($A = A$) の時は直交行列と呼ぶ。

定義から、ユニタリ行列は正則であり逆行列は、

$$ A^{-1} = A^* $$

で与えられること。A^* も正則行列であることは自明である。

定理 5.2. 以下の 4 つは同値である。

(1) A はユニタリ行列である ($A^*A = E$ を満たす)。

(2) 任意の n 次複素ベクトル x に対して $|Ax| = |x|$ (ノルムの保存)。

(3) 任意の n 次複素ベクトル x と y に対して、$(Ax, Ay) = (x, y)$ (角度の保存)。

(4) A を列ベクトルにより、$A = (a_1, a_2, \ldots, a_n)$ とすると、

$$ (a_i, a_j) = \delta_{ij} $$

即ち、構成する列ベクトルは規格直交している。実行列の時に直交行列と呼ばれる所以である。
(証明)
(1) ⇒ (2) \(|Ax|^2 = (Ax, Ax) = x^t A \bar{A} x = x^t x = |x|^2\)
(2) ⇒ (3) \(|x + y|^2 = |x|^2 + (x, y) + (y, x) + |y|^2 = |x|^2 + (x, y) + |x| + |y|^2\)

\[|A(x + y)|^2 = (Ax + Ay, Ax + Ay) = |Ax|^2 + (Ax, Ay) + (Ay, Ax) + |Ay|^2\]

(2) より，\((x, y) = (Ax, Ay) + (Ax, Ay)\) 従って，\((x, y)\) 與 \((Ax, Ay)\) の実部は等しい。
一方，\(x\) の代わりに \(i x\) を代入すると，\(i [(x, y) - (x, y)] = i [(Ax, Ay) - (Ax, Ay)]\) より，\((x, y)\) 與 \((Ax, Ay)\)
の虚部も等しい。従って，\((x, y) = (Ax, Ay)\)
(3) ⇒ (1) 任意の \(x\) と \(y\) に対して，\((x, (A^*A - E)y) = (x, A^*Ay) - (x, y) = (Ax, Ay) - (x, y) = 0\)
∴ \(A^*A - E = 0\)

(1) ⇔ (4)

\[A = (a_1a_2 \cdots a_n)\] とすると，\(A^t = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}^t\)

\[A^t A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} (a_1a_2 \cdots a_n) = \begin{pmatrix} (a_1, a_1) & (a_1, a_2) & \cdots & (a_1, a_n) \\ (a_2, a_1) & (a_2, a_2) & \cdots & (a_2, a_n) \\ \vdots & \vdots & \ddots & \vdots \\ (a_n, a_1) & (a_n, a_2) & \cdots & (a_n, a_n) \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}\]

[例題 5.7] 5.2.2 と 5.2.3 章の 1 次変換の表現行列がユニタリ行列であることを示す。

5.3.3 ユニタリ変換と座標変換

ユニタリ行列で表現される 1 次変換をユニタリ変換と呼ぶ。ここではユニタリ変換が座標変換とみなせる
ことを見ていく。その前にいくつか数学的な準備をしておこう。
i 行の成分だけ 1 で他は全て 0 である単位列ベクトルを \(e_i\) とすると，行列 \(A\) の \(i, j\) 成分 \((A)_{ij} = a_{ij}\) は
簡単な行列の積の演算から，

\[(A)_{ij} = a_{ij} = e_i^t A e_j \quad (5.14)\]

と書けることがわかる。
また，\((i, j)\) 成分だけ 1 で他は 0 である n 次列は，

\[e_i^t e_j = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix} \leftarrow i 冒 \quad (5.15)\]

で与えられる。従って，式 (5.14) と式 (5.15) から
\{e_i\}を基底ベクトルとした時の行列 \(A\) は、
\[
A = \sum_{i=1}^{n} \sum_{j=1}^{n} e_i^t e_i \Lambda e_j^t e_j
\]
(5.16)
とかける。特殊な場合として単位行列は、
\[
E = \sum_{i=1}^{n} e_i^t e_i
\]
(5.17)
と書ける。
\(U\)が \(n\)次のユニタリ行列で、列ベクトルの組 \(\{u_i\}\)により \(U = (u_1 u_2 \cdots u_n)\)として書けるとすると、\(U\)はユニタリ行列なので、
\[
U^* = {^tU} = U^{-1}
\]
(5.18)
を満たす。また、定理5.2(4)より、
\[
(u_i, u_j) = \delta_{ij}
\]
(5.19)
即ち、\(\{u_i\}\)は規格直交基底の1つである。さらに簡単な行列演算から、
\[
U e_i = u_i
\]
(5.20)
\[
{^t}e_i U^* = {^t}u_i
\]
(5.21)
となる。ただし、2つ目の式は1つ目の式で転置と複素共役をとった。式(5.19)と(5.20)より、ユニタリ行列\(U\)は規格直交座標\(\{e_i\}\)を\(\{u_i\}\)に変換することがわかる。
以下では、規格直交座標系\(\{e_i\}\)で
\[
x = {^t}(x_1, x_2, \cdots, x_n) = x_1 e_1 + x_2 e_2 + \cdots + x_n e_n
\]
と表される座標が \(U\)で変換される規格直交座標系 \(\{u_i\}\)では、どのように表現されるかを考える。即ち、
\[
x = x_1^t u_1 + x_2^t u_2 + \cdots + x_n^t u_n
\]
とした時の\(x' = {^t}(x'_1, x'_2, \cdots, x'_n)\)を求める。\(\{u_i\}\)は規格直交座標系なので式(1.21)より、\(x'\)は以下で与えられる。
\[
x'_i = (x, u_i) = {^t}x \bar{u}_i = {^t}xE \bar{u}_i = \sum_{j=1}^{n} {^t}x e_j^t e_j \bar{u}_i
\]
\[
= \sum_{j=1}^{n} {^t}x e_j^t e_j U e_i = \sum_{j=1}^{n} {^t}x e_j^t (e_j^t U e_i)
\]
\[
= \sum_{j=1}^{n} {^t}x e_j^t \bar{u}_j = \sum_{j=1}^{n} {^t}x e_j^t u_j^* = \sum_{j=1}^{n} u_j^* x_j
\]
1行目では式(5.17)を用いた。1行目から2行目では式(5.20)を用いた。2行目から3行目では式(5.14)を用いた。上の式をベクトルと行列で書くと、
\[
x' = U^* x = U^{-1} x
\]
これを式(5.1)と比較すると、規格直交座標系 \(\{e_i\}\)から \(\{u_i\}\)へ、ユニタリ行列 \(U\)により \(U e_i = u_i\)と変換するのとは、対象を \(U^* = U^{-1}\)による1次変換したのと同等であることがわかる。つまり対象を1次変換したと見るか座標を逆変換したと見るとことである。
6 固有値・固有ベクトルと対角化

以下では、特に指定なければ正則な \(n \) 次行列の場合に話を限る。

6.1 固有値・固有ベクトル

<table>
<thead>
<tr>
<th>定義 6.1.</th>
<th>(A) を正則な (n) 次行列とする。ある複素数 (\lambda) に対して、</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ax = \lambda x \quad (6.1)]</td>
<td>を満たす (0) でないベクトル (x) が存在するとき、(\lambda) を行列 (A) の固有値、(x) を (\lambda) に対する固有ベクトルと呼ぶ。</td>
</tr>
</tbody>
</table>

- 固有ベクトルは行列 \(A \) で表現される 1 次変換により向きが変わらないベクトルと解釈できる。大きさは変わっても良い。
- 式 (6.1) で \(\alpha x \) は任意の複素数を代入すると、\(A \alpha x = \lambda \alpha x \) となるので、\(\alpha x \) も固有ベクトルであることがわかる。即ち、固有ベクトルは定数倍の任意性がある。

固有値・固有ベクトルの求め方

固有値・固有ベクトルは以下の手順で求める。式 (6.1) より，

\[Ax - \lambda x = Ax - \lambda E x = (A - \lambda E)x = 0 \quad (6.2) \]

が成り立つ。この時、\(\det(A - \lambda E) \neq 0 \) だと逆行列 \((A - \lambda E)^{-1} \) が存在してしまい、これを式 (6.2) の両辺に左からかけると、\(x = 0 \) と成ってしまうので、\(\det(A - \lambda E) = 0 \) でなければならない。即ち，

\[\phi_A(\lambda) = \det(A - \lambda E) = |A - \lambda E| = 0 \quad (6.3) \]

\(\phi_A(\lambda) = 0 \) を行列 \(A \) の特性方程式と呼ぶ。\(\phi_A(\lambda) \) は \(\lambda \) の \(n \) 次の多項式で、固有値は \(\phi_A(\lambda) = 0 \) の解で与えられる。従って \(n \) 個ある。\(\lambda = 0 \) の時は \(\det(A) = 0 \) なので \(A \) が正則であるという条件に反する。従って固有値は \(0 \) にはならない。

次に、求めた \(\lambda \) を式 (6.2) に代入して固有ベクトルを求める。具体的には、\(n \) 元連立方程式,

\[
\begin{align*}
(a_{11} - \lambda)x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= 0 \\
a_{21}x_1 + (a_{22} - \lambda)x_2 + \cdots + a_{2n}x_n &= 0 \\
& \vdots \\
a_{n1}x_1 + a_{n2}x_2 + \cdots + (a_{nn} - \lambda)x_n &= 0
\end{align*}
\]

(6.4)

を解いて \(\{ x_i \} (i = 1, 2, \cdots, n) \) を求める。変数が \(n \) 個で、方程式も \(n \) 個なので変数の値が確定するように見えるが \(\det(A - \lambda E) = 0 \) なので、これら \(n \) 個の方程式は線形独立ではない。幾つかの方程式は残りの方程式と逆行列結合でかければしまうので実際は高々 \(n - 1 \) 個しか方程式がないのである。そのため、変数同士の関係しか求まらない。
[例題6.1] \(A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \) の固有値、固有ベクトルを求めよ。

(解)
\[
\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \quad \text{とすると、}\quad \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} \quad \text{より、}
\]
\[
\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \lambda \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 - \lambda & 2 \\ 3 & 2 - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \cdots(*)
\]
これが、\(\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \) 以外の解を持つためには、\[
\begin{vmatrix} 1 - \lambda & 2 \\ 3 & 2 - \lambda \end{vmatrix} = 0 \quad \text{でなければいけない。即ち、}
\]
\[(1 - \lambda)(2 - \lambda) = 2 \quad (\lambda - 4)(\lambda + 1) = 0 \quad \text{従って、} \quad \lambda_1 = 4 \quad \text{と} \quad \lambda_2 = -1 \quad \text{が固有値とわかる。次に、これに対応する固有ベクトルを求めめる。}
\]
(i) \(\lambda_1 = 4 \) の時、(*) に \(\lambda = 4 \) を代入すると、
\[
\begin{pmatrix} 1 - 4 & 2 \\ 3 & 2 - 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 & 2 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]
これから連立方程式、
\[
\begin{cases}
-3x + 2y = 0 \\
3x - 2y = 0
\end{cases}
\]
を解くが、この 2 つの方程式は同じもので 3x = 2y より x : y = 2 : 3 であることしかわからない。従って、
固有ベクトルは \(\mathbf{x}_1 = \alpha \begin{pmatrix} 2 \\ 3 \end{pmatrix} \)（但し、\(\alpha \) は任意の複素数）ともとまる。固有ベクトルは定数倍の任意性があることはわかっていても単に \(\mathbf{x}_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \) としても良い。同様にして \(\lambda_2 = -1 \) に対する固有ベクトルを求めめる。

(i) \(\lambda_2 = -1 \) の時、(*) に \(\lambda = -1 \) を代入すると、
\[
\begin{pmatrix} 1 + 1 & 2 \\ 3 & 2 + 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]
これから連立方程式、
\[
\begin{cases}
2x + 2y = 0 \\
3x + 3y = 0
\end{cases}
\]
を解くが、この 2 つの方程式は同じもので 2x = -2y より x : y = 1 : -1 であることしかわからない。従って、
固有ベクトルは \(\mathbf{x}_2 = \beta \begin{pmatrix} 1 \\ -1 \end{pmatrix} \)（但し、\(\beta \) は任意の複素数）ともとまる。固有ベクトルは定数倍の任意性があることはわかってるので単に \(\mathbf{x}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \) としても良い。

以上をまとめると、\(\lambda_1 = 4, \quad \mathbf{x}_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \quad \lambda_2 = -1, \quad \mathbf{x}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \)

[例題6.2] \(A = \begin{pmatrix} 6 & -3 & -7 \\ -1 & 2 & 1 \\ 5 & -3 & -6 \end{pmatrix} \) の固有値、固有ベクトルを求めよ。

[例題6.3] \(A = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 4 & 1 \\ 2 & -4 & 0 \end{pmatrix} \) の固有値、固有ベクトルを求めよ。
6.2 エルミート行列

定義 6.2.

\[A^* = {}^t\bar{A} = A \] \hspace{1cm} (6.5)

を満たす n 次行列 A をエルミート行列と呼ぶ。特に A が実行列 (\bar{A} = A) の時、対称行列と呼ぶ。

式 (6.5) を成分で書くと、

\[(A^*)_{ij} = a_{ij}^* = ({}^t\bar{A})_{ij} = \bar{a}_{ji} = a_{ij} = (A)_{ij} \]

行列で書くと、

\[
A^* = \begin{pmatrix} a_{11}^* & a_{21}^* & \cdots & a_{n1}^* \\ a_{21}^* & a_{22}^* & \cdots & a_{n2}^* \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}^* & a_{n2}^* & \cdots & a_{nn}^* \end{pmatrix} = \begin{pmatrix} \bar{a}_{11} & \bar{a}_{21} & \cdots & \bar{a}_{n1} \\ \bar{a}_{12} & \bar{a}_{22} & \cdots & \bar{a}_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \bar{a}_{1n} & \bar{a}_{2n} & \cdots & \bar{a}_{nn} \end{pmatrix} = A
\]

\[\bar{a}_{ii} = a_{ii} \] よりエルミート行列の対角成分は実数であることがわかる。

以上をまとめるとエルミート行列は、

\[
A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & a_{3n} & \cdots & a_{nn} \end{pmatrix}
\] \hspace{1cm} (6.6)

という形をしている。A が実行列（対称行列）の時、\(a_{ij} = a_{ji} \) となる。即ち、対角線に関して成分が線対称になる。対称行列と言われる所以である。

6.3 エルミート行列の固有値・固有ベクトル

定理 6.1. エルミート行列の固有値・固有ベクトルは特殊な性質を持つ。

(1) エルミート行列の固有値は実数である。

(2) エルミート行列の異なる固有値に対する固有ベクトルは直交する。

(証明)

(1) 固有値を \(\lambda \) とすると、\(Ax = \lambda x \ (x \neq 0) \)

\[\lambda |x|^2 = (\lambda x, x) = (Ax, x) = (x, {}^tAx) = (x, \lambda x) = \bar{\lambda}(x, x) = \bar{\lambda}|x|^2 \]

\(\therefore \lambda = \bar{\lambda} \) となり、\(\lambda \) は実数。

(2) \(A u = \alpha u, \ A v = \beta v, \ \alpha \neq \beta \) すると、

\[\alpha(u, v) = (\alpha u, v) = (Au, v) = (u, {}^t\bar{A}v) = (u, \beta v) = \beta(u, v) \]

ここで、エルミート行列の固有値は実数なので、\(\beta = \beta \).

\(\therefore (\alpha - \beta)(u, v) = 0, \ \alpha \neq \beta \) より、\((u, v) = 0 \) 即ち直交する。

[例題 6.4] 行列 \(A = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} \) の固有値、固有ベクトルを求めよ。また、固有ベクトルが直交することを示せ。
6.4 エルミート行列と対角化

定義 6.3. 対角線上の成分のみが 0 ではなく、他の成分が 0 である行列

\[
\begin{pmatrix}
 a_{11} & 0 & \cdots & 0 \\
 0 & a_{22} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & a_{nn}
\end{pmatrix}
\] (6.7)

を対角行列と呼ぶ。また、対角行列に変形することを対角化するという。

エルミート行列の対角化

エルミート行列は、固有値・固有ベクトルが求まれば容易に対角化できる。\(n \) 次のエルミート行列の固有値を \(\lambda_1, \lambda_2, \ldots, \lambda_n \) とし、これに対応する固有ベクトルを \(x_1, x_2, \ldots, x_n \) とする。固有ベクトルは定数倍の任意性があるので規格化した固有ベクトルを \(p_1, p_2, \ldots, p_n \) とする。即ち、

\[
A p_i = \lambda_i p_i, \quad p_i = \frac{x_i}{\|x_i\|}
\] (6.8)

定理 6.1(2) よりエルミート行列の固有ベクトルは直交するので、

\[
(p_i, p_j) = \delta_{ij}
\] (6.9)

が成り立つ。そこで \(\{ p_i \} \) からユナイタ行列

\[
P = (p_1 p_2 \cdots p_n)
\] (6.10)

を構成できる。\(P \) はユナイタ行列なので \(P^{-1} = P^* \) に注意すると、

定理 6.2. エルミート行列 \(A \) は、規格化された固有ベクトルを \(\{ p_i \} \) とすると、それから構成されるユナイタ行列 \(P = (p_1 p_2 \cdots p_n) \) により、

\[
P^{-1} A P = P^* A P =
\begin{pmatrix}
 \lambda_1 & 0 & \cdots & 0 \\
 0 & \lambda_2 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & \lambda_n
\end{pmatrix}
\] (6.11)

と対角化できる。

(証明)

\[
A p_i = \lambda_i p_i \text{ より, } A P = (\lambda_1 p_1 \lambda_2 p_2 \cdots \lambda_n p_n)
\]

となる。従って,

\[
P^* A P =
\begin{pmatrix}
 \bar{p}_1 & \bar{p}_2 & \cdots & \bar{p}_n
\end{pmatrix}
\begin{pmatrix}
 \lambda_1 p_1 \lambda_2 p_2 \cdots \lambda_n p_n
\end{pmatrix}
\]

\[
= \begin{pmatrix}
 \lambda_1 \bar{p}_1 p_1 & \lambda_2 \bar{p}_2 p_2 & \cdots & \lambda_n \bar{p}_n p_n \\
 \lambda_1 \bar{p}_2 p_1 & \lambda_2 \bar{p}_2 p_2 & \cdots & \lambda_n \bar{p}_n p_n \\
 \vdots & \vdots & \ddots & \vdots \\
 \lambda_1 \bar{p}_n p_1 & \lambda_2 \bar{p}_n p_2 & \cdots & \lambda_n \bar{p}_n p_n
\end{pmatrix}
= \begin{pmatrix}
 \lambda_1 & 0 & \cdots & 0 \\
 0 & \lambda_2 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & \lambda_n
\end{pmatrix}
\]

ここで, \(\bar{p}_i p_j = (p_i, p_j) = \delta_{ij} = \delta_{ij} \) を用いた。

[例題 6.5] 以下の行列を対角化せよ。

(1) \(A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) (2) \(A = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \) (3) \(A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \)
定理 6.3. 行列 P で表現されるユニタリ変換により，行列の跡 (トレース) は不変である。即ち，

$$\text{Tr}A = \text{Tr}(P^*AP) \quad (6.12)$$

(証明) $\text{Tr}(P^*AP) = \text{Tr}(P^*(AP)) = \text{Tr}(APP^*) = \text{Tr}(AE) = \text{Tr}A$

従ってエルミート行列の跡 (トレース) は対角化の前後で不変で固有値の総和になる。つまり，エルミート行列において跡の値を知りたいだけであれば対角化する必要がないことを意味している。このことは後々量子統計力学で重要な役割をする。

6.5 エルミート行列の対角化と座標変換

前の章で，H がエルミート行列であれば，適当なユニタリ行列 U により，

$$U^*HU = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

と対角化されることを見た。ここではエルミート行列と座標変換の関係を表すことになる。5.3.3 章と同様に，U が n 次のユニタリ行列で，列ベクトルの組 $\{u_i\}$ により $U = (u_1, u_2, \ldots, u_n)$ と書けるとする。式 (5.14) から U^*HU の (i,j) 成分 $(U^*HU)_{ij}$ は以下のよう計算できる。

$$(U^*HU)_{ij} = \left(u_i^*U^*Hue_j \right) = u_i^*Hu_j = \lambda_j u_i^*u_j = \lambda_j \delta_{ij}$$

ここで，(5.20)，(5.21) と u_j が固有ベクトルであるということ，つまり $Hu_j = \lambda_j u_j$ を用いた。上式は，ユニタリ行列 U による座標変換 $Ue_i = u_i$ により得られる新しい規格直交座標系 $\{u_i\}$ から観ると，エルミート行列 H は対角行列に見えることを意味する。

つまり，エルミート行列の対角化は，対角成分しかない行列になるような直交座標系を見つけることに相当する。

Coffee brake

我々はのちに量子力学を勉強すると，シュレディンガー方程式（2 階の微分方程式）を解くこと行列を対角化することが等しいことを学ぶ。量子力学が対角化と等価である理由である。そして対角化は適用的な基底ベクトルを見つけること（座標変換）に他ならない。つまりシュレディンガー方程式を解くことと座標変換が等価になるのだ。

6.6 2 次式と標準化

行列の対角化の応用例を 1 つ見ておくことにしよう。n 個の変数 $\{x_1, x_2, \ldots, x_n\}$ に関する実係数の和 2 次式を 2 次形式と呼ぶ。$x_i x_j$ の係数を a_{ij} とおくと，

$$F(x_1, x_2, \ldots, x_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j \quad (6.13)$$

ここで，$x_i x_j$ と $x_j x_i$ は同じなので，a_{ij} と a_{ji} の取り方は任意性があるが，$a_{ij} = a_{ji}$ とする。

$n = 2$ の時，$x_1 = x$，$x_2 = y$ すると，式 (6.13) は，

$$F(x, y) = a_{11}x^2 + a_{22}y^2 + 2a_{12}xy \quad (6.14)$$
\(n = 3 \)の時, \(x_1 = x, \ x_2 = y, \ x_3 = z \) とすると, 式 (6.13) は、

\[
F(x, y, z) = a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{23}yz + 2a_{31}zx
\] (6.15)

ベクトル \(\mathbf{x} = (x_1, x_2, \cdots, x_n) \) と行列 \(\mathbf{A} = (a_{ij}) \) を用いると, 式 (6.13) は,

\[
F(x) = \mathbf{x}^T \mathbf{A} \mathbf{x}
\] (6.16)

と書き直せる。ここで, \(a_{ij} = a_{ji} \) としたので \(\mathbf{A} \) は対称行列 (成分が実数のエルミート行列) であり, 規格化した固有ベクトル,

\[
\mathbf{A} \mathbf{p}_i = \lambda_i \mathbf{p}_i, \quad \| \mathbf{p}_i \| = 1
\] (6.17)

により, \(\mathbf{P} = (\mathbf{p}_1 \mathbf{p}_2 \cdots \mathbf{p}_n) \) で構成される直交行列 (成分が実数のユニタリ行列) を用いて \(\mathbf{P}^{-1} \mathbf{A} \mathbf{P} \) により対角化される。\(\mathbf{P} \) は直交行列なので, \(\mathbf{x}' = \mathbf{P}^{-1} \mathbf{x} \) であり, \(\mathbf{P}^{-1} \) も直交行列であることに注意すると, 式 (6.16) は,

\[
F(x) = \mathbf{x} \mathbf{P} \mathbf{P}^{-1} \mathbf{A} \mathbf{P}^{-1} \mathbf{x} = \mathbf{x} \mathbf{P}(\mathbf{P}^{-1} \mathbf{A}) \mathbf{P}^{-1} \mathbf{x}
\]

と書き直せる。ここで, \(\mathbf{x}' = (x_1', x_2', \cdots, x_n') \) は直交行列 \(\mathbf{P}^{-1} \) により \(\mathbf{P}^{-1} \mathbf{x} = \mathbf{x}' \) と座標変換されたものである。つまり, 2 次形式 (6.13) は適当な座標変換により交叉項 (cross term) \(x_i x_j \ (i \neq j) \) を消去できることを示している。

今, \(\lambda_i \geq 0 \) (1 \(\leq i \leq m \)), \(\lambda_i < 0 \) (\(m + 1 \leq i \leq n \)) としよう。正負がこの順になっていれば並べ替えれば良い。この時, \(x_i'' = x_i'/\sqrt{|\lambda_i|} \) とすると, 式 (6.18) は,

\[
F(x) = H(x'') = x_1''^2 + x_2''^2 + \cdots + x_m''^2 - x_{m+1}'' - \cdots - x_n''^2
\] (6.19)

と書ける。これを 2 次形式 \(F(x) \) の標準形と呼ぶ。

[例題 6.6] 次の 2 次形式を標準化せよ

1. \(5x^2 - 6xy + 5y^2 \)
2. \(2x^2 + 2y^2 + 5z^2 - 2xy - 4yz + 4zx \)
A 表記や定義の違い
ベクトルや内積の表記は高校と大学で異なるので、代表的なものを一覧にしてまとめてしまう。教科書によっ
tては、これ以外の表記を用いる場合もあるので注意すること。
また、数学と物理では定義が異なることがある。特に複素ベクトルの内積では、数学は後ろの
ベクトルの複素共役をとるのに対して、物理では前のベクトルの複素共役をとる。
複素共役をとる記号も数学と物理では異なる。特に「*」は数学ではエルミート行列を表す記号として使わ
れ、物理では複素共役をとる記号として使われる。同じ記号が違う意味で使われるので注意が必要だ。
数学の線形代数の教科書を参考にしながら、物理の量子力学の教科書を読む時は気をつけてほしい。

<table>
<thead>
<tr>
<th>項目</th>
<th>高校</th>
<th>大学の数学</th>
<th>大学の物理</th>
</tr>
</thead>
<tbody>
<tr>
<td>ベクトル</td>
<td>\vec{a}</td>
<td>\mathbf{a}</td>
<td>\mathbf{a}</td>
</tr>
<tr>
<td>スカラーの複素共役</td>
<td>$\vec{\alpha}$</td>
<td>$\mathbf{\alpha}$</td>
<td>$\mathbf{\alpha}^*$</td>
</tr>
<tr>
<td>ベクトルの複素共役</td>
<td>\vec{a}</td>
<td>\mathbf{a}</td>
<td>\mathbf{a}^*</td>
</tr>
<tr>
<td>行列の複素共役</td>
<td>\vec{A}</td>
<td>\mathbf{A}</td>
<td>\mathbf{A}^*</td>
</tr>
<tr>
<td>実ベクトルの内積</td>
<td>$\vec{a} \cdot \vec{b} = \sum_{i=1}^{n} a_i b_i$</td>
<td>$(\mathbf{a}, \mathbf{b}) = \sum_{i=1}^{n} a_i b_i$</td>
<td>$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i$</td>
</tr>
<tr>
<td>複素ベクトルの内積</td>
<td>$(\mathbf{a}, \mathbf{b}) = \sum_{i=1}^{n} a_i \bar{b}_i$</td>
<td>$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i^* \bar{b}_i$</td>
<td></td>
</tr>
<tr>
<td>転置行列</td>
<td>\mathbf{A}^\dagger</td>
<td>\mathbf{A}^\dagger</td>
<td>\mathbf{A}^\dagger</td>
</tr>
<tr>
<td>エルミート行列</td>
<td>$\mathbf{A}^* \equiv \mathbf{A}^\dagger$</td>
<td>$\mathbf{A}^* \equiv \mathbf{A}^\dagger$</td>
<td>$\mathbf{A}^* \equiv \mathbf{A}^\dagger$</td>
</tr>
<tr>
<td>転置行列を用いた内積</td>
<td>$(\mathbf{a}, \mathbf{b}) = \mathbf{a}^\dagger \mathbf{b}$</td>
<td>$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^\dagger \mathbf{b}$</td>
<td>$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^\dagger \mathbf{b}$</td>
</tr>
</tbody>
</table>

44