Dark matter and electroweak scalegenesis from a bilinear scalar condensate

Masatoshi Yamada (Kanazawa University)

Collaborator: Jisuke Kubo (Kanazawa University)

Based on

J, Kubo and M. Y., arXiv:1505.05971 (to be published in PRD)

J, Kubo and **M. Y.**, PTEP **2015** 093B01 (arXiv:1506.06460)

Workshop of elementary particle physics in Matsue @Shimane Univ.

Introduction

- The SM is complete.
- Still unsolved problems.
- In this talk,
 - Fine-tuning problem (criticality problem)
 - The origin of electroweak symmetry breaking
 - Dark matter
- Suggest a model based on the <u>classical scale</u> invariance.

Classical scale invariance and Scalegenesis

- The Higgs mass is prohibited.
 - The SM becomes scaleless.
- How to generate a scale?
 - Coleman-Weinberg mechanism
 - Perturbative
 - The mass term is not generated.

$$V_{\text{eff}}(v_h) = \frac{\lambda_H}{4} v_h^4 + \sum_{\alpha} \frac{N_{\alpha} M_{\alpha}^4}{64\pi^2} \left(\log \left(\frac{M_{\alpha}^2}{\mu^2} \right) - C_{\alpha} \right)$$

- Strong dynamics
 - Non-perturbative
 - The dynamical mass term is generated.

$$M \sim \langle \bar{\psi}\psi \rangle \propto \Lambda_{\rm QCD}$$

Contents

1. The model

2. Dark matter candidates

 1st order phase transition of electroweak symmetry (at finite temperature)

Contents

1. The model

2. Dark matter candidates

3. 1st order phase transition of electroweak symmetry (at finite temperature)

- Strongly interacting Hidden sector
 - $SU(N_c) \times U(N_f)$ invariant + classically scale invariant

$$\mathcal{L}_{\text{HQCD}} = -\frac{1}{4} F_{\mu\nu}^{a} F^{a\mu\nu} + ([D_{\mu}S_{i}]^{\dagger} D^{\mu}S_{i}) \\ -\hat{\lambda}_{S}(S_{i}^{\dagger}S_{i})(S_{j}^{\dagger}S_{j}) - \hat{\lambda}_{S}'(S_{i}^{\dagger}S_{j})(S_{j}^{\dagger}S_{i}) \\ +\hat{\lambda}_{HS}(S_{i}^{\dagger}S_{i})H^{\dagger}H \\ \langle S^{\dagger}S \rangle \\ m_{\text{H}}^{2} = -\lambda_{HS}\langle S^{\dagger}S \rangle \\ \mathcal{L}_{\text{HQCD}}$$

$$\mathcal{L}_{\text{HQCD}}$$

Effective theory

Low energy effective Lagrangian

$$\mathcal{L}_{\text{eff}} = ([\partial_{\mu} S_i]^{\dagger} \partial^{\mu} S_i) + \lambda_{HS} (S_i^{\dagger} S_i) H^{\dagger} H$$
$$-\lambda_S (S_i^{\dagger} S_i) (S_j^{\dagger} S_j) - \lambda_S' (S_i^{\dagger} S_j) (S_j^{\dagger} S_i)$$

- Assume that DSSB is dominant.
- Attempt to describe the genesis of scale a la Coleman-Weinberg.
- Scale invariant Lagrangian.
- Renormalizable
- λ_S, λ_S' and λ_{HS} : effective coupling constants.
 - which contain the quantum effects of hidden gluon.

Comparison

 $\mathcal{L}_{ ext{HQCD}}$

Scale invariant

 $\mathcal{L}_{ ext{QCD}}$

Chiral invariant

Effective model

$$V_{\text{eff}} = \lambda_S(S_i^{\dagger} S_i)(S_j^{\dagger} S_j) + \lambda_S'(S_i^{\dagger} S_j)(S_j^{\dagger} S_i) - \lambda_{HS}(H^{\dagger} H)(S^{\dagger} S)$$

$$V_{\text{eff}} = G[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma^5\tau^\alpha\psi)^2]$$

Order parameter

$$\langle S^{\dagger}S\rangle \neq 0$$

$$\langle \bar{\psi}\psi \rangle \neq 0$$

 σ

 ϕ^{α}

meson

.

 π^{α}

Effective potential

- The mean-field approximated effective potential
 - Integrate out χ (Gauss integral)

$$S_i \to S_i + \chi_i$$

$$V_{
m MFA} = M^2(S_i^\dagger S_i) + \lambda_{
m H}(H^\dagger H)^2 \ -N_{
m f}(N_{
m f}\lambda_S + \lambda_S')f^2 + rac{N_{
m f}N_{
m c}}{32\pi^2}M^4 {
m ln}\,rac{M^2}{\Lambda_H^2} \ M^2 = 2(N_{
m f}\lambda_S + \lambda_S')f - \lambda_{HS}H^\dagger H \qquad {
m Tr}\log\left(\chi\right) \ {
m \overline{MS}} \ {
m scheme}$$

Solving the gap equations

$$\langle S \rangle = 0, \quad \langle f \rangle \neq 0, \quad \langle H \rangle \neq 0$$

Solutions

The vacuum of Higgs

$$\langle h \rangle = \frac{N_{\rm f} \lambda_{HS}}{G} \Lambda_H^2 \exp\left(\frac{32\pi^2 \lambda_H}{N_c G} - \frac{1}{2}\right)$$

The scalar condensate

$$\langle S^{\dagger} S \rangle = \langle f \rangle = \frac{2\lambda_H}{G} \Lambda_H^2 \exp\left(\frac{32\pi^2 \lambda_H}{N_c G} - \frac{1}{2}\right)$$

Constituent scalar mass

$$M^2 = \Lambda_H^2 \exp\left(\frac{32\pi^2 \lambda_H}{N_c G} - \frac{1}{2}\right)$$

$$G = 4N_{\rm f}\lambda_H\lambda_S - N_{\rm f}\lambda_{HS}^2 + 4\lambda_H\lambda_S'$$

Input & free parameters

Input

- Higgs mass
- EW vacuum
- DM relic abundance

$$m_{\rm H}=126~{\rm GeV}$$

$$\langle h \rangle = 246 \text{ GeV}$$

$$\Omega \hat{h}^2 \sim 0.12$$

7 free parameters.

$$\lambda_S$$

$$\lambda_S'$$

$$\lambda_S \qquad \lambda_S' \qquad \lambda_{HS} \qquad \lambda_H$$

$$\lambda_H$$

$$N_{
m f}$$

$$N_{
m c}$$

$$\Lambda_H$$

Contents

1. The model

Dark matter candidates

3. 1st order phase transition of electroweak symmetry (at finite temperature)

Dark matter candidate

Dark matter candidate is Q

- \square The excitation fields from the vacuum $< S^{\dagger}S >$
 - Assume the unbroken $U(N_f)$ flavor symmetry:

$$\langle \Omega | (S_i^{\dagger} S_j) | \Omega \rangle = f_0 \delta_{ij} + \delta_{ij} Z_{\sigma}^{\frac{1}{2}} \sigma + t_{ji}^{\alpha} Z_{\phi}^{\frac{1}{2}} \phi^{\alpha}$$

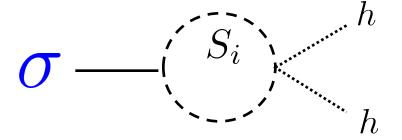
c.f.
$$\langle \Omega | \bar{\psi}_i \psi_j | \Omega \rangle = f_0 \delta_{ij} + \delta_{ij} Z_\sigma^{\frac{1}{2}} \sigma + t_{ji}^\alpha Z_\pi^{\frac{1}{2}} \pi^\alpha$$

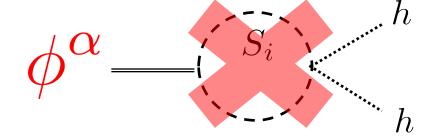
Mean-field Lagrangian (before integrating S)

$$\mathcal{L}'_{ ext{MFA}} \supset \sigma \longrightarrow (S_i)_{S_i} \qquad \phi^{oldsymbol{lpha}} \longrightarrow (S_i)_{S_j} \qquad S_i \qquad S_j$$

Dark matter candidate is ϕ

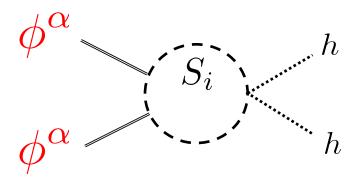
Decay into Higgs through S loop



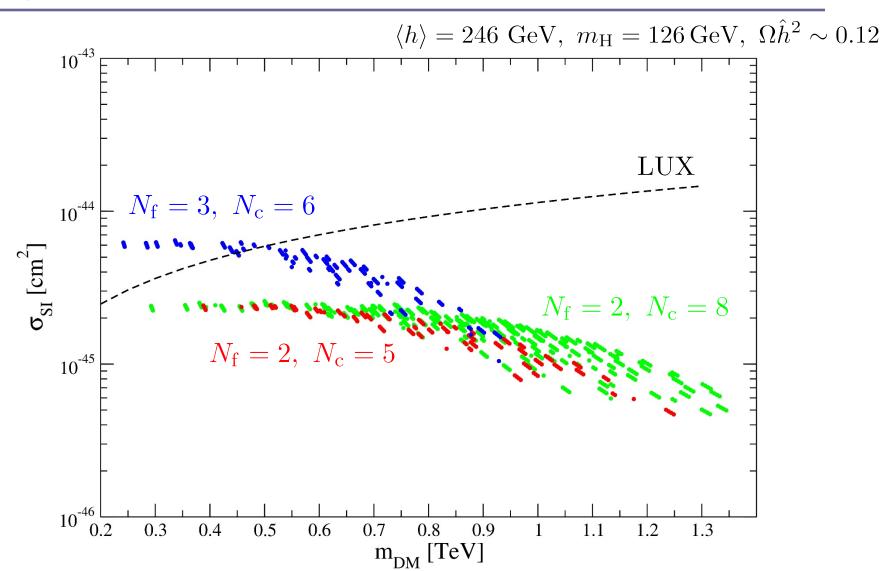


Forbidden by flavor symmetry

Coannihilation



$\sigma_{\rm SI}$ vs. $m_{\rm DM}$



Contents

1. The model

2. Dark matter candidates

 1st order phase transition of electroweak symmetry (at finite temperature)

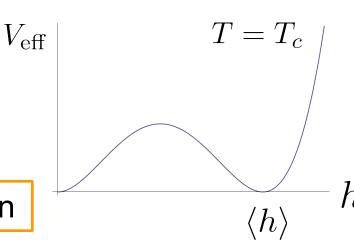
Electroweak 1st order phase transition

EW Baryogenesis scenario

- Sakharov conditions
 - 1. Baryon number violation
 - C-symmetry and CP-symmetry violation
 - 3. Interactions out of thermal equilibrium.

Electroweak strong first-order phase transition

$$\frac{\langle h \rangle}{T_c} \gtrsim 1$$



The SM cannot satisfy this condition

Phase transition

□ V_{eff} at zero temperature

 \square $V_{\rm eff}$ at critical temperature $T_{\rm c}^{\rm EW}({\rm EWPT})$

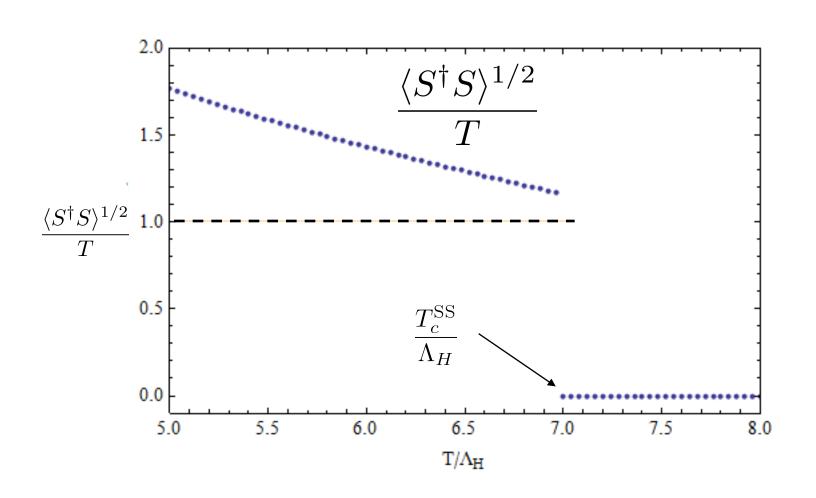
$$V_{\text{eff}}(f, h; T = T_c^{\text{EW}}) \longrightarrow \langle h \rangle = 0$$

 \square $V_{\rm eff}$ at critical temperature $T_{\rm c}^{\rm SS}$ (SSPT)

$$V_{\text{eff}}(f, h; T = T_c^{\text{SS}}) \quad \longrightarrow \quad \langle f \rangle = \langle S^{\dagger} S \rangle = 0$$

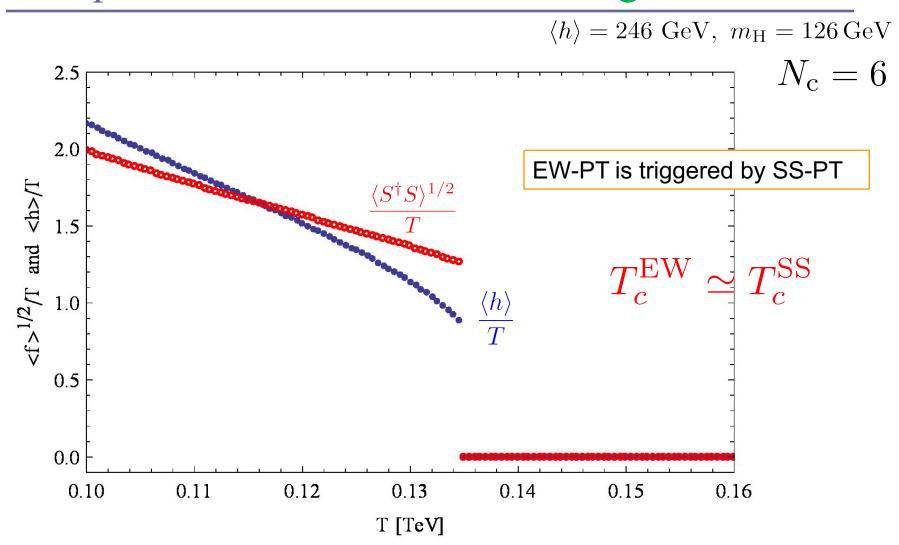
Scale transition is strong 1st order.

J, Kubo and M. Y., PTEP 2015 093B01 (arXiv:1506.06460)



Without dark matter case: $N_{\rm f} = 1$

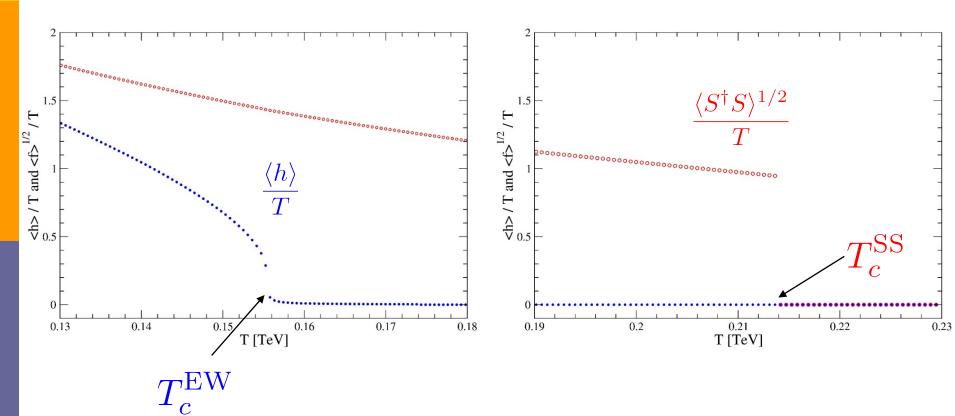
EW phase transition becomes strong 1st order



With dark matter case: $N_f = 2$ EW phase transition becomes weak 1st order

 $\langle h \rangle = 246 \text{ GeV}, \ m_{\rm H} = 126 \text{ GeV}, \ \Omega \hat{h}^2 \sim 0.12$

$$N_{\rm c}=6$$



Difference between two cases

The Higgs portal is important

$$-\lambda_{HS}(S^{\dagger}S)H^{\dagger}H$$

EW-PT is triggered.

Not enough to trigger

Need more precisely analysis

Summary

- We suggested a new model based on classically scale invariance.
 - Strongly interacting hidden sector with the scalar field
 - Explain the mechanism of generation of "scale"
 - Dynamical Scale Symmetry Breaking $\langle S^{\dagger}S \rangle \neq 0$
 - The EW symmetry breaking $\langle h \rangle \neq 0$

"Scalegenesis" is realized!

Summary

- We suggested a new model based on classically scale invariance.
 - Strongly interacting hidden sector with the scalar field
 - Explain the mechanism of generation of "scale"
 - Dynamical Scale Symmetry Breaking $\langle S^{\dagger}S \rangle \neq 0$
 - The EW symmetry breaking $\langle h \rangle \neq 0$

"Scalegenesis" is realized!

- Dark matter candidate exists.
- The EW 1st order phase transition

Prospects

- More precise analysis is needed.
 - Lattice simulation
- C and CP violation

Appendix

Hierarchy problem

- □ Nothing between Λ_{EW} and Λ_{pl} ?
 - $\Lambda_{\text{EW}} \sim \mathcal{O}(10^2) \text{ GeV} \iff \Lambda_{\text{pl}} \sim \mathcal{O}(10^{19}) \text{ GeV}$

Fine-tuning problem

$$m_R^2 = m_0^2 - \left(\frac{\lambda}{16\pi^2} + \cdots\right) \Lambda_{\rm pl}^2$$

$$(10^2 \, {\rm GeV})^2 = (10^{19} \, {\rm GeV})^2 - (10^{19} \, {\rm GeV})^2$$

- Fermion and gauge field have not the problem.
 - Gauge symmetry:

$$m_0^2 A_\mu A^\mu$$

$$m_Z^2 \propto \langle h \rangle^2 \sim \Lambda_{\rm EW}^2$$

Chiral symmetry:

$$m_0 \bar{\psi} \psi$$

$$m_q^2 \propto \langle \bar{\psi}\psi \rangle \sim \Lambda_{\rm QCD}^2$$

Argument by Bardeen

W.A. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391 (1995).

- The quadratic divergences are spurious.
 - Λ always is subtracted by renormalization.
 - The dimensional regularization automatically subtracts the quadratic divergence.

- Only logarithmic terms related to the scale anomaly survive in the perturbation.
 - The non-zero beta function $\beta \neq 0$

Argument by Bardeen

W.A. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391 (1995).

The RG equation of Higgs mass

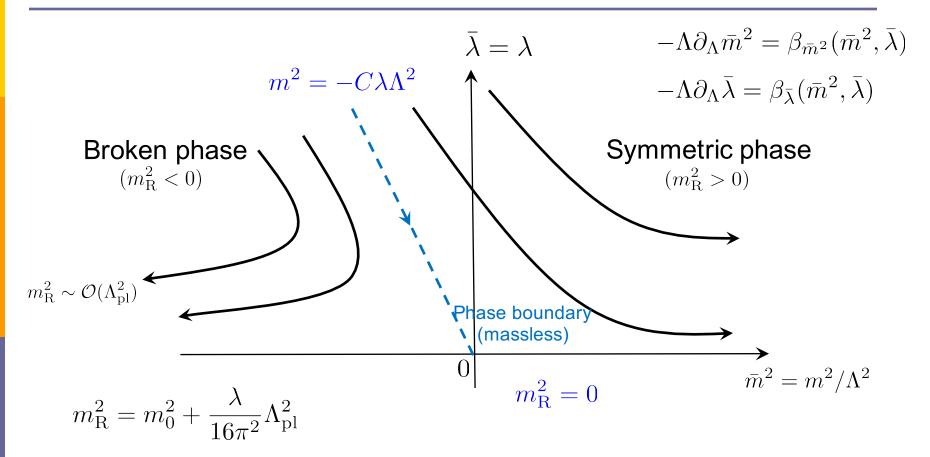
$$\frac{dm^2}{d\log\mu} = \frac{m^2}{16\pi^2} \left(12\lambda + 6y_t^2 - \frac{9}{2}g^2 - \frac{3}{2}g_1^2 \right)$$

- If $m(\Lambda_{\rm pl}) = 0$, the mass dose not run.
- □ If the Higgs field is coupled to a new particle with mass M,

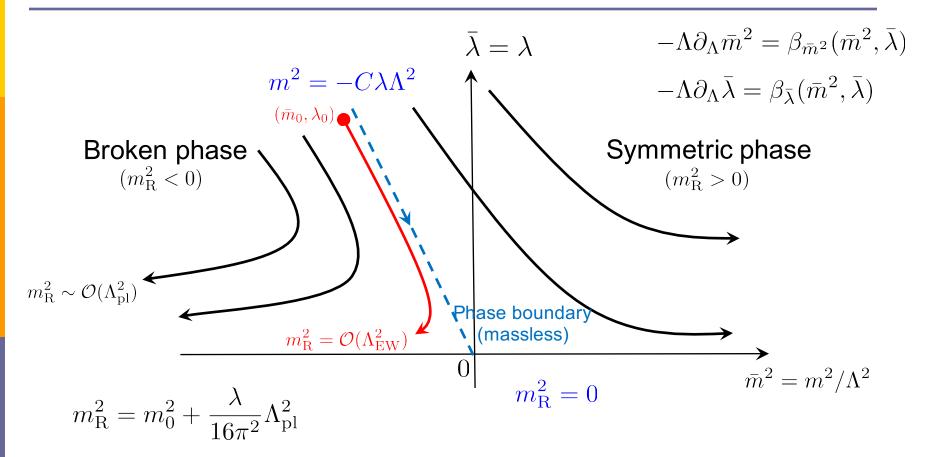
$$m_R^2 = m_0^2 + \frac{\lambda'}{16\pi^2} M^2 \log\left(\frac{\mu^2}{M^2}\right) + \cdots$$

- If $M \sim \mathcal{O}(\text{TeV})$, fine-tuning is not needed.
 - \blacksquare Even if so, the origin of m_0 with TeV order is unknow.
- If $M \gg \text{TeV}$, fine-tuning problem appears.

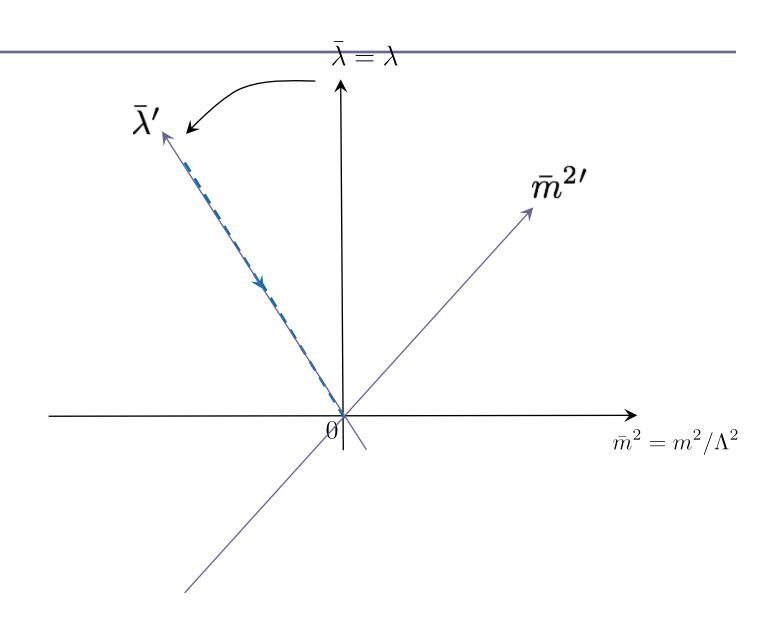
$$\mathcal{L}_{\text{bare}}|_{\Lambda=\Lambda_{\text{pl}}} = \frac{1}{2} (\partial_{\mu}\phi)^2 - \frac{m_0^2}{2} \phi^2 - \frac{\lambda_0}{4} \phi^4$$

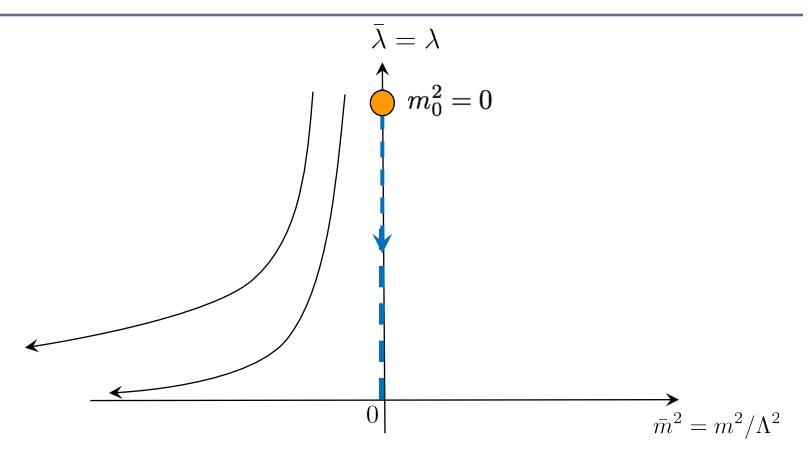


$$\mathcal{L}_{\text{bare}}|_{\Lambda=\Lambda_{\text{pl}}} = \frac{1}{2}(\partial_{\mu}\phi)^2 - \frac{m_0^2}{2}\phi^2 - \frac{\lambda_0}{4}\phi^4$$



Fine-tune problem = Why is the Higgs close to critical?





The classical scale invariance = The bare mass is exactly put on the critical line. The massless theory (critical theory) is realized.

The classical scale invariance makes the Higgs critical.

Classical scale invariance

- \square The classical scale invariance prohibits m_0 .
 - □ Boundary condition: $m_0 = m(\Lambda_{\rm pl}) = 0$
- The origin of observed mass is radiative corrections with TeV scale.

$$m_R^2 = \frac{\lambda'}{16\pi^2} M^2 \log\left(\frac{\mu^2}{M^2}\right)$$

The classical scale invariance is one of candidates for the solution of fine-tuning problem.

How to generate radiative corrections?

Advantages of our model

- The number of parameters is less.
- The mediator is the strongly interacting particle.
 - Observing the hidden sector is easier than other models such as the hidden (quark) model.

$$\square < \overline{\psi}\psi > \to < S > \to m_H \to < h >$$

$$\square < S^{\dagger}S > \to m_H \to < h >$$

- The DM candidate is CP even.
 - c.f. The DM in hidden (quark) QCD is CP odd.
- Strong 1st order of EW phase transition can be realized.(will see later)

Where is the vacuum?

□ Minimum of V_{MFA} ; Solving gap equations:

$$\frac{\partial}{\partial S_i^a} V_{\text{MFA}} = 0, \quad \frac{\partial}{\partial f} V_{\text{MFA}} = 0, \quad \frac{\partial}{\partial H} V_{\text{MFA}} = 0$$

Three solutions:

i.
$$\langle S_i^a \rangle \neq 0, \langle M^2 \rangle = 0, G = 0$$

ii.
$$\langle S_i^a \rangle = 0$$
, $\langle M^2 \rangle = 0$ $\langle V_{\text{eff}} \rangle = 0$

iii.
$$\langle S_i^a \rangle = 0$$
, $\langle M^2 \rangle \neq 0$, $G > 0 \Longrightarrow \langle V_{\text{eff}} \rangle < 0$

$$M^{2} = 2(N_{f}\lambda_{S} + \lambda_{S}')f - \lambda_{HS}H^{\dagger}H$$
$$G = 4N_{f}\lambda_{H}\lambda_{S} - N_{f}\lambda_{HS}^{2} + 4\lambda_{H}\lambda_{S}'$$

The solution (iii) is suitable.

How to evaluate physical values?

Review: T. Hatsuda and T. Kunihiro, Phys. Rep. 247 221 (1994)

- Mean-field approximation (MFA)
 - Many body system is reduced to 1 body system.
 - Methods:
 - 1. Introduce a "BCS" vacuum $|\Omega\rangle$ and a mean field:

$$f_{ij} \equiv \langle \Omega | S_i^{\dagger} S_j | \Omega \rangle$$

2. Apply the following replacements to \mathcal{L}_{eff}

$$(S_i^{\dagger}S_j)(S_j^{\dagger}S_i) \to : (S_i^{\dagger}S_j)(S_j^{\dagger}S_i) : + 2f_{ij}(S_j^{\dagger}S_i) - |f_{ij}|^2$$

Normal ordering

We obtain

$$\langle \Omega | : \mathcal{L}_{Int} : | \Omega \rangle = 0$$

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{MFA}} + : \mathcal{L}_{\mathrm{Int}} :$$

Mean-field approximation

 $lue{}$ Bogoliubov-Valatin vacuum $|\Omega
angle$

$$\langle \Omega | (S_i^{\dagger} S_j) | \Omega \rangle = f_0 \delta_{ij} + Z_{\sigma}^{1/2} \delta_{ij} \sigma + Z_{\phi}^{1/2} t_{ji}^{\alpha} \phi^{\alpha}$$

$$\langle S_i S_j \rangle = \left\langle \sum_{a=1}^{N_c} S_i^a S_j^a \right\rangle$$

Wick contractions

$$\langle \Omega | : \mathcal{O} : | \Omega \rangle = 0$$

 $\langle \Omega | : \mathcal{O} : | \Omega \rangle = 0$

$$(S_i^{\dagger} S_j)(S_j S_i) =: (S_i^{\dagger} S_j)(S_j^{\dagger} S_i) : +2f_{ij}(S_j^{\dagger} S_i) - |f_{ij}|^2$$

Mean-field approximation

fill Lagrangian $\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{MFA}} + \mathcal{L}_I$

$$\langle \Omega | \mathcal{L}_I | \Omega \rangle = 0$$

$$\mathcal{L}_{\text{MFA}} = (\partial^{\mu} S^{\dagger} \partial_{\mu} S) - M^{2} (S_{i}^{\dagger} S_{j})$$

$$+ N_{f} (N_{f} \lambda_{S} + \lambda_{S}') Z_{\sigma} \sigma^{2} + \frac{\lambda_{S}'}{2} Z_{\phi} \phi^{\alpha} \phi^{\alpha}$$

$$- 2(N_{f} \lambda_{S} + \lambda_{S}') Z_{\sigma}^{1/2} \sigma (S_{i}^{\dagger} S_{i}) - 2\lambda_{S}' Z_{\phi}^{1/2} (S_{i}^{\dagger} t_{ij}^{\alpha} \phi^{\alpha} S_{j})$$

$$+ \lambda_{HS} (S_{i}^{\dagger} S_{i}) H^{\dagger} H - \lambda_{H} (H^{\dagger} H)^{2}$$

Constituent scalar mass

$$M^2 = 2(N_f \lambda_S + \lambda_S') f - \lambda_{HS} H^{\dagger} H$$

Effective potential

$$V_{\text{MFA}} = M^2(S_i^{\dagger} S_i) + \lambda_H (H^{\dagger} H)^2 - N_f (N_f \lambda_S + \lambda_S') f^2 + \frac{N_c N_f}{32\pi^2} M^4 \log \frac{M^2}{\Lambda_H^2}$$

$$H = \begin{pmatrix} \chi^+ \\ \langle h \rangle + h + i \chi^0 \end{pmatrix}$$

Mass of dark matter

- Mass = a pole of two point function
 - Inverse two point function of ϕ^{α} (dark matter)

$$\Gamma^{\alpha\beta}_{\phi\phi}(p^2) = \overline{\phi^{\alpha}} + \overline{\phi^{\beta}} + \overline{\phi^{\alpha}} (\overline{\zeta}) \overline{\phi^{\beta}}$$

$$= \delta^{\alpha\beta} \left[Z_{\phi} \lambda_S' + Z_{\phi} \lambda_S'^2 N_c \Gamma(p^2) \right]$$

Find zero

$$\Gamma^{\alpha\beta}_{\phi\phi}(p^2 = m_{\rm DM}^2) = 0$$

Coannahilation

$$\kappa_{s(t)}\delta_{\alpha\beta} = \begin{pmatrix} \phi^{\alpha} & & h \\ & \ddots & h \end{pmatrix} + \text{cross}$$

$$+ \phi^{\alpha} + \phi^{\alpha} + \phi^{\beta} + \phi^{\beta} + crosses$$

$$+ crosses$$

Velocity averaged annihilation cross section

$$\langle v\sigma \rangle = \frac{1}{32\pi m_{\rm DM}^3} \sum_{I=W,Z,t,h} (m_{\rm DM}^2 - m_I^2)^{1/2} a_I + \mathcal{O}(v^2)$$

$$a_{W(Z)} = 4(2)[\text{Re}(\kappa_s)]^2 \Delta_h^2 m_{W(Z)}^4 \left(3 + 4 \frac{m_{\text{DM}}^4}{m_{W(Z)}^4} - 4 \frac{m_{\text{DM}}^2}{m_{W(Z)}^2}\right)$$

$$a_t = 24[\text{Re}(\kappa_s)]^2 \Delta_h^2 m_t^2 (m_{\text{DM}}^2 - m_t^2)$$

$$a_h = [\text{Re}(\kappa_s)]^2 \left(1 + 24\lambda_H \Delta_h \frac{m_W^2}{g^2}\right)^2$$

$$\Delta_h = (4m_{\rm DM}^2 - m_h^2)^{-1}$$

Dark matter candidate is

- \square The excitation fields from the vacuum $< S^{\dagger}S >$
 - Assume the unbroken $U(N_f)$ flavor symmetry:

$$\langle \Omega | (S_i^{\dagger} S_j) | \Omega \rangle = f_0 \delta_{ij} + \delta_{ij} Z_{\sigma}^{\frac{1}{2}} \sigma + t_{ji}^{\alpha} Z_{\phi}^{\frac{1}{2}} \phi^{\alpha}$$

Mean-field Lagrangian (before integrating S)

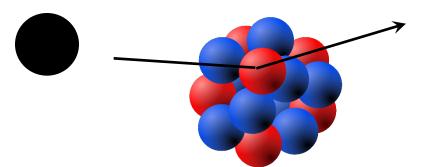
$$\mathcal{L}'_{\text{MFA}} = (\partial_{\mu} S_i)^2 - M^2 (S_i^{\dagger} S_i) + N_{\text{f}} (N_{\text{f}} \lambda_S + \lambda'_S) Z_{\sigma} \sigma^2 + \frac{\lambda'_S}{2} Z_{\phi} (\phi^{\alpha})^2$$

$$-2(N_{\rm f}\lambda_S + \lambda_S')Z_{\sigma}^{1/2}(\sigma(S_i^{\dagger}S_i)) - 2\lambda_S'Z_{\phi}^{1/2}(S_i^{\dagger}t_{ij}^{\alpha}\phi^{\alpha}S_j)$$

$$+\lambda_{HS}(S_i^{\dagger}S_i)H^{\dagger}H - \lambda_H(H^{\dagger}H)^2$$

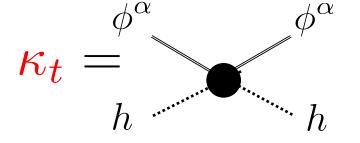
Direct detection

Scattering off the Nuclei



Spin independent cross section

$$\sigma_{\rm SI} = \frac{1}{4\pi} \left(\frac{\kappa_t \hat{r} m_N^2}{m_{\rm DM} m_h^2} \right)^2 \left(\frac{m_{\rm DM}}{m_N + m_{\rm DM}} \right)^2$$



 m_N : nucleon mass

 \hat{r} : nucleonic matrix element $\hat{r} \sim 0.3$

$$\hat{r} \sim 0.3$$

Inverse two-point function

 $\Gamma^{\alpha\beta}_{\phi\phi}(p^2 = m_{\rm DM}^2) = 0$

$\sigma_{\rm SI}$

$$\sigma_{\rm SI} = \frac{1}{4\pi} \left(\frac{\kappa_t \hat{r} m_N^2}{m_{\rm DM} m_h^2} \right)^2 \left(\frac{m_{\rm DM}}{m_N + m_{\rm DM}} \right)^2$$

 $\hat{r} \sim 0.3$

Dark matter relic abundance

DM relic abundance

$$\Omega \hat{h}^2 = (N_{\rm f}^2 - 1) \frac{Y_{\infty} s_0 m_{\rm DM}}{\rho_c / \hat{h}^2}$$

Entropy density

$$s_0 = 2890 \text{ cm}^{-3}$$

Critical density/Hubble parameter

$$\rho_c/\hat{h}^2 = 1.05 \times 10^{-5} \text{ GeV cm}^{-3}$$

DM number density

$$g_* = 106.75 + N_{\rm f}^2 - 1$$

$$\frac{dY}{dx} = -0.264g_*^{1/2} \frac{m_{\rm DM} M_{\rm pl}}{x^2} \langle \sigma v \rangle (Y^2 - \bar{Y}^2)$$

At finite temperature

Momentum integral

$$\int \frac{d^4p}{(2\pi)^4} f(p_0, \vec{p}) \longrightarrow T \sum_{n=-\infty}^{\infty} \int \frac{d^3p}{(2\pi)^3} f(\omega_n, \vec{p})$$

Matsubara frequency

$$\omega_n = \begin{cases} 2n\pi T & \text{(boson loop)} \\ (2n+1)\pi T & \text{(fermion loop)} \end{cases}$$

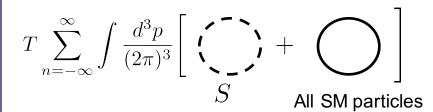
Effective potential

There are four components.

$$V_{\text{eff}}(f, h; T) =$$

$$V_{\mathrm{MFA}}(f,h) + V_{\mathrm{CW}}(h)$$
 Zero temp. part

$$+V_{\mathrm{FT}}(f,h;T)+V_{\mathrm{RING}}(h;T)$$
 Finite temp. part



Summation of thermal mass (remove the IR divergence)

Scale transition is strong 1st order.

