Gauge coupling unification and moduli stabilization in SO(32) heterotic string theory

立石卓也(北海道大学 修士2年) 共同研究者:安倍博之(早稲田大学) 小林達夫(北海道大学) 大塚啓(早稲田大学) 高野恭史(北海道大学)

標準模型は完成したが、素粒子物理学の課題は残っている。

- ・重力が含まれていない
- ・暗黒物質の候補
- ・インフラトンの候補
- ・暗黒エネルギー
- ・ニュートリノの質量
- Strong CP問題
- バリオン/反バリオン数非対称 など

標準模型を超えた物理があるはず! 様々な研究:

- ・ どの問題に焦点を当てるか?
- どのようなアプローチで進めるか?

標準模型を超えた物理の一つ

超弦理論:重力を含んだ統一論の候補

超弦理論には無数の真空が存在する。(string landscape) (理論の自由度がとてつもなく大きい)

無数の真空の中に、 SMを実現するものが含まれていると期待されている。

しかし、SMを完全に再現する真空は まだ見つかっていない。

本当に存在するか、 具体的に見つけたい。

研究の目的:超弦理論から標準模型を完全に再現する

完全な再現のために

定性的側面: ゲージ群: $SU(3)_C \times SU(2)_L \times U(1)_Y$ 全ての粒子:表現、カイラルフェルミオン、3世代

定量的側面:(SMのパラメータ)

- 結合定数
- ・クォークの質量
- ・クォーク混合角
- CKM位相
- ・レプトンの質量
- ・ヒッグスの質量、真空期待値
- Strong CP phase

定性的側面 ✓ゲージ群:SU(3)_C × SU(2)_L × U(1)_Y ✓全ての表現 ✓カイラルフェルミオン ✓世代数:3世代 H. Abe, T. Kobayashi, H. Otsuka and Y. Takano, JHEP **1509** (2015)

定量的側面 ✓ゲージ結合

H. Abe, T. Kobayashi, H. Otsuka, Y. Takano and T. H. Tatsuishi [hep-th/1507.04127](PTEP)

SO(32) ヘテロティック弦、磁場のあるトーラスコンパクト化 ゲージ群の分解: $SO(32) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)^{12}$ Visible sector Hidden sector コンパクト化: $10D \rightarrow 4D \times T^2 \times T^2 \times T^2$ $>) \times (>) \times (<$ トーラス T^i 上には $U(1)_a$ の背景磁場 m^i_a が存在しうる。 理論のパラメータ:mⁱ_a (36個)

まずは定性的な再現

定性的側面 ✓ゲージ群:SO(32) → $SU(3)_C \times SU(2)_L \times U(1)_Y$

- 全ての粒子
- ・カイラルフェルミオン
- •世代数:3世代

$$\begin{pmatrix} u_L \\ d_L \end{pmatrix} \quad u_R, d_R \\ SU(3) \quad SU(2) \quad \begin{pmatrix} v_L \\ e_L \end{pmatrix}, H \\ e_R, v_R \end{pmatrix}$$

SMの粒子の表現が全て出てくる
ハイパーチャージも再現できる

定性的側面

- ✓ゲージ群:SO(32) → $SU(3)_C \times SU(2)_L \times U(1)_Y$
- ✓全ての粒子:SO(32)_{adj} → 全て出る
- カイラルフェルミオン
- •世代数:3世代

カギはトーラス・背景磁場

トーラス上のDirac方程式を解く

・トーラスは2重周期性を持っている

磁場中のDirac方程式: $\begin{pmatrix} \partial_x - i\partial_y + 2\pi QMx \end{pmatrix} \psi_+ = 0 \\ (\partial_x + i\partial_y - 2\pi QMx) \psi_- = 0 \end{pmatrix}$

トーラスの2重周期性を反映した解
・ ヤコビの楕円関数

M:背景磁場の強さ

ヤコビの楕円関数≈ガウス関数の無限和

$$\psi_{+} = \sum_{j=0}^{|QM|-1} A_{j} \cdot \sum_{l \in \mathbb{Z}} e^{-\pi QM \left(\frac{j}{QM}+l\right)^{2}} e^{2\pi i QM \left(\frac{j}{QM}+l\right)(x+iy)}$$

|QM| 個の独立な解

ガウス関数 *QM* > 0のとき解をもつ

	QM > 0	QM < 0	
ψ_+	QM 世代	X	カイラル QM 世代
ψ_	X	QM 世代	

SMの再現

定性的側面 ✓ゲージ群:*SU*(3)_c × *SU*(2)_L × *U*(1)_Y ✓全ての粒子 ✓カイラルフェルミオン ✓世代数:3世代

できた!

● 湯川結合

● モジュライ固定

私の研究

ゲージ群: $SU(3)_C \times SU(2)_L \times U(1)_Y$ 結合定数: g_3, g_2, g_Y

- Tree-levelではuniversal couplingのみ
- 1-loop効果で背景磁場に依存したnon-universal coupling
- 1-loop効果はGreen-Schwarz項を用いて計算できる

$$\frac{1}{g_3^2} = \operatorname{Re}\langle S \rangle + \beta_k^3 \operatorname{Re}\langle T_k \rangle$$

$$\frac{1}{g_2^2} = \operatorname{Re}\langle S \rangle + \beta_k^2 \operatorname{Re}\langle T_k \rangle$$

$$\frac{1}{g_Y^2} = A(N) \operatorname{Re}\langle S \rangle$$

1-loop補正

$$\beta_k^3 = \frac{1}{2\pi} d_{ijk} m_2^i m_2^j$$

$$\beta_k^2 = \frac{1}{2\pi} d_{ijk} m_1^i m_1^j$$

$$SU(3) \geq SU(2) \circ l \lambda,$$

背景磁場への依存性が異なる

ゲージ結合を再現するためには、

・ ケーラーモジュライ

・ ディラトン

に条件が課される。

$$T_2 = a_2 T_1 + b_2 T_3 = a_3 T_1 + b_3$$

 $\operatorname{Re}\langle T_k \rangle$

モジュライ固定

モジュライ:コンパクト空間の大きさを変える自由度

モジュライの自由度が残っていると、重力を変えてしまう
 モジュライをmassiveにする

ケーラーモジュライの固定

背景磁場が存在すれば、ケーラーモジュライは固定される!

3つのうち 2つのケーラーモジュライ を固定できる

 $T_2 = A_2 T_1$ $T_{3} = A_{3}T_{1}$

しかし、

・ゲージ結合の再現

・ケーラーモジュライの固定 の両方を考えると、困難が生じた。

ケーラーモジュライに対する2組の条件

- ・ ゲージ結合の再現より: $T_2 = a_2T_1 + b_2$ $T_3 = a_3T_1 + b_3$
- ・ モジュライ固定より: $T_2 = A_2 T_1$ $T_3 = A_3 T_1$

一般に、これらの条件は矛盾する。

私たちの模型では、vector-likeな粒子が多数存在する。

結果

 $m = M_s \times 10^{-1}$ にVector-likeが出てくる場合

背景磁場の入れ方:~ 30⁶ 通り(6パラメータ)

✓ ゲージ群、カイラルフェルミオン、3世代

背景磁場:~ 2000 通り

✓ 結合定数の再現(vector-likeの寄与を含む)
 ✓ ケーラーモジュライの固定

Vector-likeな組の数	20	25	30	35
背景磁場の入れ方	0	2	2	0

具体的な解析結果

背景磁場の値					'	/ector-likeの数 モジュライのvev.							
No.		$2m_1^i$			$2m_2^i$		SU(2)	SU(3)	$\langle S \rangle$	$\langle T_1 \rangle$	$\langle T_2 \rangle$	$\langle T_3 \rangle$	$\operatorname{Vol}(M)$
1	-1	3	-1	-7	1	1	10	30	2.93	2.16	1.08	0.43	1.01
2	1	3	-1	-5	1	1	0	30	2.84	1.59	1.59	0.40	1.00
3	5	-1	-1	-1	1	-3	25	10	2.93	1.59	0.40	1.59	1.00
4	7	-1	-1	1	1	-3	25	15	2.93	2.16	0.43	1.08	1.00

まとめ

- ・SO(32) ヘテロ弦からSMを再現したい
- SO(32)、トーラス、背景磁場が重要!
- ゲージ結合を再現し、かつケーラーモジュライを固定することのできる背景磁場を探索した
- ・Vector-like粒子の質量がストリングスケールのとき、現 実的な模型は存在しない
- 20-30組程度のvector-like粒子が、ストリングスケールの10⁻¹に現れる場合には、模型が存在した

- 残ったモジュライの固定を行う
 ディラトン: gaugino condensationによるracetrackポテンシャル
 残ったケーラー: NS5-brane上でのgaugino condensation
 複素構造モジュライの固定方法を研究する
- ・SMの他のパラメータの再現

Backup

Flux compactification

For example: SU(3)

generators: $T^{a} = H_{1}, H_{2}, E_{\pm \alpha}, E_{\pm \beta}, E_{\pm (\alpha + \beta)}$

magnetic flux:

 $F_{\mu\nu} = F^a_{\mu\nu}T^a$

Gauge transformation

$$\begin{aligned} \overrightarrow{\epsilon} &= (\epsilon^1, \cdots, \epsilon^8) \\ \psi &\to e^{i\epsilon^a T^a} \psi \\ F^a_{\mu\nu} &\to F^a_{\mu\nu} + \Delta^a, \quad \Delta^a \equiv -f^{abc} \epsilon^b F^c_{\mu\nu} \end{aligned}$$

Magnetic flux with only Cartan directions: $(F_{\mu\nu}^3 = \dots = F_{\mu\nu}^8 = 0)$ $F_{\mu\nu} = F_{\mu\nu}^1 H_1 + F_{\mu\nu}^2 H_2$ $\rightarrow F_{\mu\nu}^1 H_1 + F_{\mu\nu}^2 H_2 + \alpha^a F_{\mu\nu}^a (\epsilon^4 E_\alpha - \epsilon^3 E_{-\alpha})$ $+ \beta^a F_{\mu\nu}^a (\epsilon^6 E_\beta - \epsilon^5 E_{-\beta})$ $+ (\alpha + \beta)^a F_{\mu\nu}^a (\epsilon^8 E_{(\alpha+\beta)} - \epsilon^7 E_{-(\alpha+\beta)})$

These terms break gauge invariance!

Flux compactification

$$F_{\mu\nu} = F_{\mu\nu}^{1}H_{1} + F_{\mu\nu}^{2}H_{2} \rightarrow F_{\mu\nu}^{1}H_{1} + F_{\mu\nu}^{2}H_{2} + \alpha^{a}F_{\mu\nu}^{a}(\epsilon^{4}E_{\alpha} - \epsilon^{3}E_{-\alpha}) + \beta^{a}F_{\mu\nu}^{a}(\epsilon^{6}E_{\beta} - \epsilon^{5}E_{-\beta}) + (\alpha + \beta)^{a}F_{\mu\nu}^{a}(\epsilon^{8}E_{(\alpha + \beta)} - \epsilon^{7}E_{-(\alpha + \beta)})$$

These terms break gauge invariance!

For example

 $\alpha^{a}F^{a}_{\mu\nu} = 0, \beta^{a}F^{a}_{\mu\nu}, (\alpha + \beta)^{a}F^{a}_{\mu\nu} \neq 0$

 $F_{\mu\nu}$ is invariant under $\vec{\epsilon} = (\epsilon^1, \epsilon^2, \epsilon^3, \epsilon^4, 0, ..., 0)$

Generators which don't change the $F_{\mu\nu}$ are $H_1, H_2, E_{\pm\alpha}$.

Gauge group : $SU(3) \rightarrow SU(2) \times U(1)$

Derivation of the SM: The SM particles

We can derive these particles including their hypercharges.

particle	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$
$Q = \begin{pmatrix} u \\ d \end{pmatrix}_L$	3	2	1/6
u_R	3	1	2/3
d_R	3	1	-1/3
$L = \begin{pmatrix} \nu_e \\ e \end{pmatrix}_L$	1	2	-1/2
e_R	1	1	-1
$ u_R$		not exist	
$SU(3)_C$ gaugino	8	1	0
$SU(2)_L$ gaugino	1	3	0
$U(1)_Y$ gaugino	1	1	0
$ ilde{H}_u$: Higgsino	1	2	1/2
$ ilde{H}_d$: Higgsino	1	2	-1/2

The MSSM fermions

Derivation of the SM: The SM particles

SO(32)_{adj}

Non-zero weights	⊕	Cartans	\Rightarrow	$SO(12)\otimes SO(20)$	Representation
$(\pm 1, \pm 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$		16		$SO(32)_{\rm adj}$	496
$(\pm 1, \pm 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$		6		$(66_{\mathrm{adj}},1)$	66
$(\pm 1, 0, 0, 0, 0, 0; \pm 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)$				$(12_v, 20_v)$	240
$(0, 0, 0, 0, 0, 0; \pm 1, \pm 1, 0, 0, 0, 0, 0, 0, 0, 0)$		10		$(1,190_{adj})$	190

particle	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$
$Q = \begin{pmatrix} u \\ d \end{pmatrix}_L$	3	2	1/6
u_R	3	1	2/3
d_R	3	1	-1/3

Decomposition of representation $SO(12) \rightarrow SU(3) \otimes SU(2) \otimes U(1)^3$

Non-zero weights \oplus	Cartans	\Rightarrow Representation	$U(1)_Y$	particle
$(\pm 1, \pm 1, 0, 0, 0, 0)$	6	$SO(12)_{\rm adj}: 66 {\rm rep}.$		
(1, -1, 0, 0, 0, 0)	2	$(8,1)_{0,0,0}$	0	SU(3) gaugino
(0, 0, 0, 0, 1, -1)	1	$(1,3)_{0,0,0}$	0	SU(2) gaugino
	3	$(1,1)_{0,0,0} imes 3$	0	$U(1)$ gaugino $\times 3$
(-1, -1, 0, 0, 0, 0)		$(3,1)_{0,-2,-2}$	-1/3	d_{R1}
(1, 0, 0, 1, 0, 0)		$(3,1)_{0,2,-2}$	-1/3	d_{R2}
(1, 0, 0, -1, 0, 0)		$(3,1)_{0,0,4}$	2/3	u_R
(1, 0, 0, 0, 1, 0)		$(3,2)_{1,1,1}$	1/6	Q_1
(1, 0, 0, 0, -1, 0)		$(3,2)_{-1,1,1}$	1/6	Q_2
(0, 0, 0, 1, 1, 0)		$(1,2)_{1,1,-3}$	-1/2	L_1
(0, 0, 0, 1, -1, 0)		$(1,2)_{-1,1,-3}$	-1/2	L_2
(0, 0, 0, 0, 1, 1)		$(1,1)_{2,0,0}$	0	n_1
$(-1) \times (\uparrow)$		$\overline{(\circ,\times)_{\triangle,\Box,\diamond}}$	Y	$\overline{\otimes}$

Non-zero weights	\Rightarrow	Representation	1981	$U(1)_Y$	particle
$(\pm 1, 0, 0, 0, 0, 0; \pm 1, 0, \dots, 0)$		$SO(12)_v\otimes SO(20)_v:12$	2 imes 20 rep		122244
$(1, 0, 0, 0, 0, 0; 1, 0, \ldots, 0)$		$(3, 1)_{0,1,1;1,0,\ldots,0}$		2/3	u_{R2}
$(-1, 0, 0, 0, 0, 0; -1, 0, \ldots, 0)$		$(\bar{3},1)_{0,-1,-1;-1,0,\ldots,0}$		-2/3	$\overline{u_R}_2$
$(1, 0, 0, 0, 0, 0; -1, 0, \ldots, 0)$		$(3, 1)_{0,1,1;-1,0,\ldots,0}$		-1/3	d_{R3}
$(-1, 0, 0, 0, 0, 0; 1, 0, \ldots, 0)$		$(\bar{3},1)_{0,-1,-1;1,0,\ldots,0}$		1/3	\overline{d}_{R3}
$(0, 0, 0, 1, 0, 0; 1, 0, \ldots, 0)$		$(1, 1)_{0,1,-3;1,0,\dots,0}$		0	n_2
$(0, 0, 0, -1, 0, 0; -1, 0, \ldots, 0)$		$(1, 1)_{0, -1, 3; -1, 0, \dots, 0}$		0	\overline{n}_2
$(0, 0, 0, 1, 0, 0; -1, 0, \dots, 0)$		$(1, 1)_{0,1,-3;-1,0,\dots,0}$		-1	e_{R1}
$(0, 0, 0, -1, 0, 0; 1, 0, \dots, 0)$		$(1, 1)_{0, -1, 3; 1, 0, \dots, 0}$		1	$\overline{e_R}_1$
$(0, 0, 0, 0, 1, 0; 1, 0, \dots, 0)$		$(1, 2)_{1,0,0;1,0,\ldots,0}$		1/2	L_4
$(0, 0, 0, 0, -1, 0; -1, 0, \dots, 0)$		$(1, 2)_{-1,0,0;-1,0,\ldots,0}$		-1/2	\overline{L}_4
$(0, 0, 0, 0, 1, 0; -1, 0, \dots, 0)$		$(1, 2)_{1,0,0;-1,0,\ldots,0}$		-1/2	L_3
$(0, 0, 0, 0, -1, 0; 1, 0, \dots, 0)$		$(1, 2)_{-1,0,0;1,0,\ldots,0}$		1/2	\overline{L}_3
Non-zero weights	⇒	> Representation	$U(1)_Y$	particle	
$(0, 0, 0, 0, 0, 0; \pm 1, \pm 1, 0, \dots, 0)$		$SO(20)_{\rm adj}: 190 {\rm rep}.$	-	1	
$(0, 0, 0, 0; 1, 1, 0, \dots, 0)$		$(3, 1)_{0,0,0;1,1,0,\ldots,0}$	1	$\overline{e_{R_2}}$	
$(0, 0, 0, 0; -1, -1, 0, \dots, 0)$		$(3, 1)_{0,0,0;-1,-1,0,\ldots,0}$	-1	e_{R2}	
$(0, 0, 0, 0; 1, -1, 0, \dots, 0)$		$(3, 1)_{0,0,0;1,-1,0,\ldots,0}$	0	\overline{n}_3	

Derivation of the SM: Chiral structure, generations

 $4D \quad 6D$ Dirac equation $0 = i(\Gamma^{M}D_{M})\lambda = i(\Gamma^{\mu}D_{\mu} + \Gamma^{m}D_{m})\lambda$

Concentrate on zero-mode $\psi_0^{(i)}$ $i(\Gamma^m D_m)\psi_0^{(i)} = 0$

Dirac equation: $i\Gamma^m D_m \begin{pmatrix} \psi_+\\ \psi_- \end{pmatrix} = 0$

 $(\partial_x - i\partial_y + 2\pi QMx)\psi_+ = 0$ $(\partial_x + i\partial_y - 2\pi QMx)\psi_- = 0$ Boundary condition $\psi(x + 1, y) = e^{2\pi i QMy} \psi(x, y)$ $\psi(x, y + 1) = \psi(x, y)$

Exact solutions can be expressed using theta function.

Theta function $\int Doubly periodic function Roughly speaking, infinite sum of Gauss functions. If no <math>\partial_y$

In the case of QM > 0

 $\partial_x \psi_+ = (-2\pi QMx)\psi_+ \Rightarrow \psi_+ = e^{-\pi QMx^2}$ $\partial_x \psi_- = (+2\pi QMx)\psi_- \Rightarrow \psi_- = e^{+\pi QMx^2}$

Normalizable Non-normalizable

Derivation of the SM: Chiral structure, generations

String scale

 l_S : length of string

$$l_S = \frac{1}{M_S} = 2\pi \sqrt{\alpha'}$$

$$S = \int d^{10}x \sqrt{-g} e^{-2\phi} \left[\frac{1}{(2\pi)^7 (\alpha')^4} R_{10} + \frac{1}{2(2\pi)^7 (\alpha')^3} F^{MN} F_{MN} \right]$$
$$= \int d^4x \sqrt{-g} e^{-2\phi} V \left[\frac{1}{(2\pi)^7 (\alpha')^4} R_4 + \frac{1}{2(2\pi)^7 (\alpha')^3} F^{\mu\nu} F_{\mu\nu} \right]$$

$$M_{\rm Pl}^{2} = \frac{V}{(2\pi)^{7}(\alpha')^{4}} e^{-2\phi} \qquad 4g_{4}^{2}M_{\rm Pl}^{2} = \frac{1}{\alpha'} = (2\pi)^{2}M_{S}^{2}$$

$$\frac{2}{g_{4}^{2}} = \frac{V}{2(2\pi)^{7}(\alpha')^{3}} e^{-2\phi} \qquad M_{S}^{2} = \frac{M_{\rm Pl}^{2}}{4\pi\alpha^{-1}} \sim 1.4 \times 10^{17} [\text{GeV}]$$

$$M_{\rm Pl} = 2.4 \times 10^{18} [\text{GeV}] \qquad \text{Reduced Planck mass}$$

$$\alpha_{4}^{-1} = 25 \qquad \text{For the MSSM}$$

Gauge couplings

$$\alpha_1 = \frac{\alpha_{EM}}{1 - \sin^2 \theta_W}$$
$$\alpha_2 = \frac{\alpha_{EM}}{\sin^2 \theta_W}$$

Particle Data Group: $\alpha_{EM}(M_Z) = \frac{1}{128}$ $\sin^2 \theta_W(M_Z) = 0.231$ $\alpha_3(M_Z) = 0.1185$

 $\alpha_1^{-1}(M_Z) = 98.4$ $\alpha_2^{-1}(M_Z) = 29.6$ $\alpha_3^{-1}(M_Z) = 8.44$

Universal gauge couplings

10次元の作用(tree-level) (10D heterotic SUGRA)

$$S_{\text{bos}} = -\frac{1}{2g_{10D}^2} \int e^{-2\phi} \text{tr}(F \wedge *F) + \cdots$$
(F:SO(32) \mathcal{O} field strength) ϕ :dilaton

Dimensional reduction

$$= \underbrace{-\frac{\text{Vol}(M)}{4g_{10D}^2}}_{\mu\nu} e^{-2\langle\phi\rangle} \int d^4x \ F_{\mu\nu}F^{\mu\nu} + \cdots + (\mu, \nu = 0, 1, \dots, 3)$$

$$\frac{1}{g_{4D}^2} = \frac{\operatorname{Vol}(M)}{g_{10D}^2} e^{-2\langle \phi \rangle} = \operatorname{Re}\langle S \rangle$$

 $F_{\mu\nu}F^{\mu\nu}=F_{\mu\nu}F^{\mu\nu}|_{SU(3)}+F_{\mu\nu}F^{\mu\nu}|_{SU(2)}+\cdots$ $\frac{1}{g_{SU(3)}^2(M_s)} = \frac{1}{g_{SU(2)}^2(M_s)} = \frac{1}{g_{4D}^2(M_s)} = \langle \operatorname{Re} S \rangle$

現実的なモデルのためには、non-universalな補正が必要

Non-universal gauge couplings

Gauge kinetic function $f(\Phi)$

 $f(\Phi) = A(\phi^{\operatorname{Re}} + i\phi^{\operatorname{Im}}) + \cdots$

$$\mathcal{L} \supset \int d^{2}\theta f(\Phi) W^{a} W^{a} + h.c \rightarrow -\frac{1}{4} A \phi^{\text{Re}} F_{MN} F^{MN} + \frac{1}{8} A \phi^{\text{Im}} F_{MN} \tilde{F}^{MN} F_{MN} \tilde{F}^{MN} \mathcal{O}$$
係数より、 $F_{MN} F^{MN} \mathcal{O}$ 係数が分かる

 $F_{\mu\nu}\tilde{F}^{\mu\nu}$ への1-loop補正を求め、 $F_{\mu\nu}F^{\mu\nu}$ への補正を読み取る

Green-Schwarz term (1-loop effect)

$$S_{GS} = \frac{1}{24(2\pi)^{2}\alpha'} \int B^{(2)} \wedge X_{8}$$

$$B^{(2)}: Kalb-Ramond field F: SO(32) \mathcal{O} field strength$$

$$X_{8} = \frac{1}{24} \operatorname{Tr} F^{4} - \frac{1}{7200} (\operatorname{Tr} F^{2})^{2} - \frac{1}{240} (\operatorname{Tr} F^{2}) (\operatorname{tr} R^{2}) + \frac{1}{8} \operatorname{tr} R^{4} + \frac{1}{32} (\operatorname{tr} R^{2})^{2}$$

$$\int \text{Dimensional reduction}$$

$$\left(\frac{1}{2\pi} d_{ijk} m_{2}^{i} m_{2}^{j}\right) b_{k} F_{\mu\nu} \tilde{F}^{\mu\nu} \Big|_{SU(3)} + \left(\frac{1}{2\pi} d_{ijk} m_{1}^{i} m_{1}^{j}\right) b_{k} F_{\mu\nu} \tilde{F}^{\mu\nu} \Big|_{SU(2)} + \cdots$$

$$m_{a}^{i} : i \mathbb{B} \equiv \mathcal{O} \wedge - \Im \mathcal{A} \mathcal{O} \text{field strength}$$

$$T_{k} = t_{k} + i b_{k}: k \mathbb{B} \equiv \mathcal{O} \wedge - \Im \mathcal{A} \mathcal{O} \text{kähler moduli}$$

 d_{ijk} : intersection number

Gauge kinetic function $f_{SU(3)}, f_{SU(2)}, f_{U(1)_Y}$ $\operatorname{Im}(f_{SU(3)})\Big|_{1-\operatorname{loop}} = \left(\frac{1}{2\pi}d_{ijk}m_2^im_2^j\right)b_k$ $T_k = t_k + ib_k$: kähler moduli $f_{SU(3)} = S + \beta_k^3 T_k$ $f_{SU(2)} = S + \beta_k^2 T_k$ 1-loop補正 $\beta_{k}^{3} = \frac{1}{2\pi} d_{ijk} m_{2}^{i} m_{2}^{j}$ $\beta_{k}^{2} = \frac{1}{2\pi} d_{ijk} m_{1}^{i} m_{1}^{j}$ $f_{U(1)_Y} = A(N)S$ Massless条件より、 loop補正なし SU(3)とSU(2)では、 背景磁場への依存性が異なる $\frac{1}{g_3^2} = \langle \operatorname{Re} f_{SU(3)} \rangle = \operatorname{Re}\langle S \rangle + \beta_k^3 \operatorname{Re}\langle T_k \rangle$ $\frac{1}{g_2^2} = \langle \operatorname{Re} f_{SU(2)} \rangle = \operatorname{Re}\langle S \rangle + \beta_k^2 \operatorname{Re}\langle T_k \rangle$ $\frac{1}{g_Y^2} = \langle \operatorname{Re} f_{U(1)_Y} \rangle = A(N) \operatorname{Re}\langle S \rangle$ A(N): 規格化定数 モデルに依存 Non-universal gauge couplings

補足

(全て実部をとっている)

$$\begin{split} \langle S \rangle &= \frac{2.44}{A(N)} \\ \beta_3^k \langle T_k \rangle &= \left(\frac{A(N)}{1.468} - 1 \right) \langle S \rangle \\ \beta_2^k \langle T_k \rangle &= \left(\frac{A(N)}{1.573} - 1 \right) \langle S \rangle \end{split}$$

3つのmoduli *T*₁, *T*₂, *T*₃ 2つの拘束条件

これらの値を再現するような $\langle t_k \rangle = \operatorname{Re}(T_k)$ を求める。

結果

$m = M_s \times 10^{-1}$ にVector-likeが出てくる場合に

- ・ ゲージ結合を再現する
- ケーラーモジュライを固定する

ことのできる背景磁場の入れ方

Vector-likeな組の数	20	25	30	35
背景磁場の入れ方	0	2	2	0

Vector-like	5	10	15	20	25	30	35	40	45
SM	0	3	3	0	6	3	7	3	3
MSSM	0	0	0	0	2	2	0	0	0

ケーラーモジュライの固定

背景磁場が存在する場合:

ケーラーポテンシャル

$$K = -\ln(S + \bar{S}) - \sum_{i=1}^{3} \ln\left(T_i + \bar{T}_i - \sum_a m_a^i V_a\right)$$

Hidden U(1)に関する ゲージ不変性より

$$V = V_F + V_D$$

$$V_D = \sum_{a=1}^{13} (D_a)^2 \qquad D_a = q_a |\phi|^2 + \sum_i \frac{m_a^i}{T_i + \overline{T}_i} \qquad \begin{array}{c} \\ & f \\ & f$$