松江素粒子物理学研究会, 25-27 March. 2016

Renormalization-scale uncertainty in the decay rate of false vacuum

庄司裕太郎 東京大学

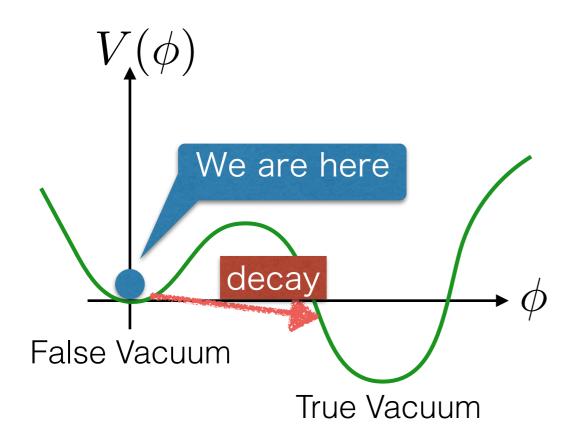
JHEP 1601 (2016) 031 (arXiv:1511.04860 [hep-ph])

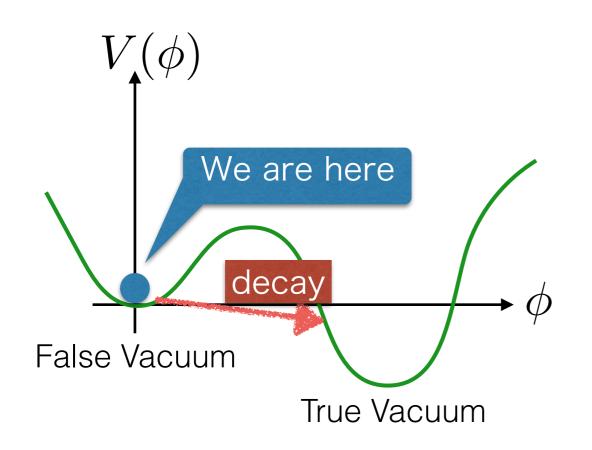
Collaborators: Motoi Endo, Takeo Moroi, Mihoko M. Nojiri (KEK, IPMU)

Contents

- \cdot Introduction
- scale uncertainty and 1-loop calculation
- · SM + stau system
- · Summary

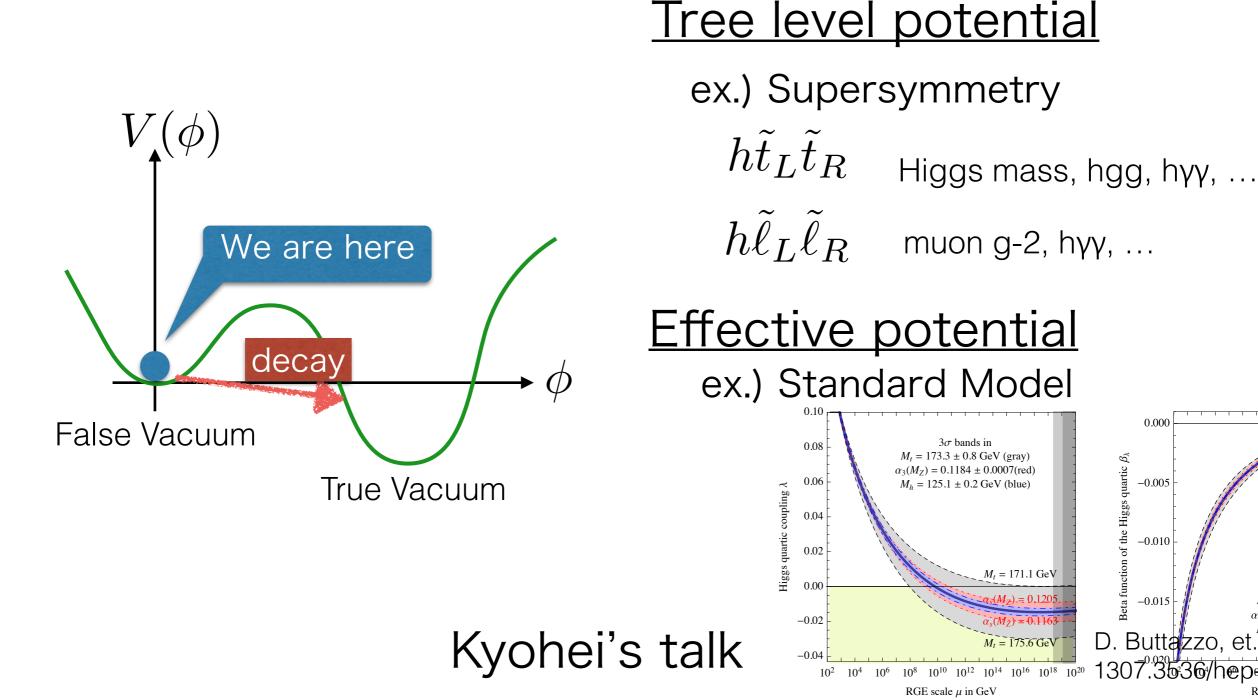
Introduction





Tree level potential

ex.) Supersymmetry $h \tilde{t}_L \tilde{t}_R$ Higgs mass, hgg, hyy, ... $h \tilde{\ell}_L \tilde{\ell}_R$ muon g-2, hyy, ...



1307.3536/hep-ph RGE scale

D. Buttazzo, et

 $M_t = 173.$ $\alpha_3(M_Z) = 0$

 $M_h = 125$

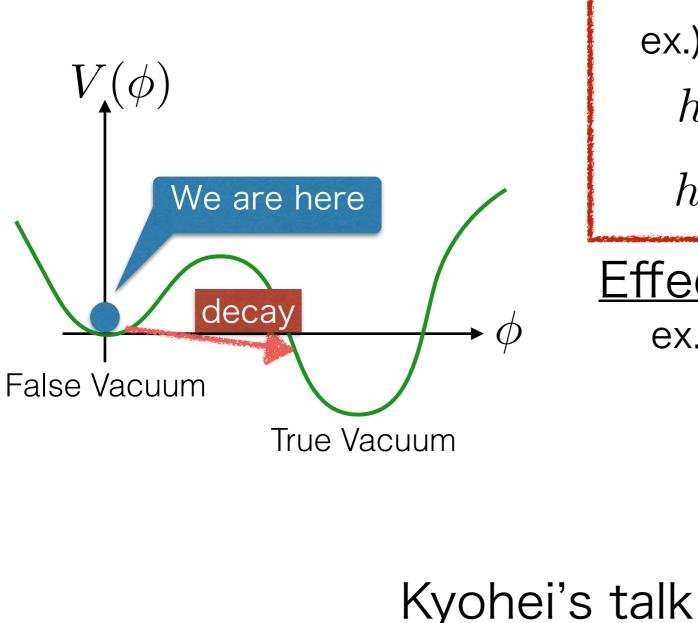
0.000

-0.005

-0.010

-0.015

Beta function of the Higgs quartic eta_λ



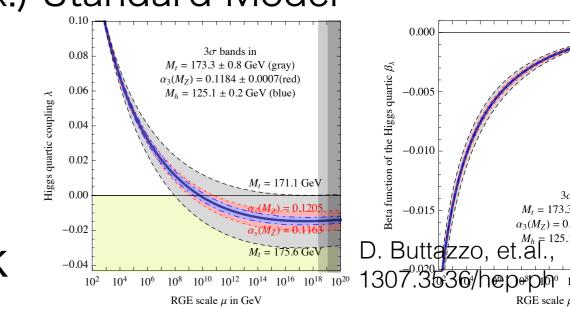
<u>Tree level potential</u>

ex.) Supersymmetry

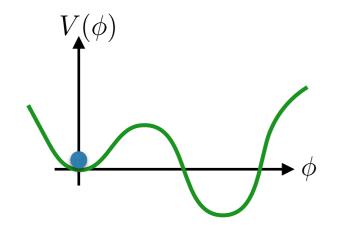
 $h \tilde{t}_L \tilde{t}_R$ Higgs mass, hgg, hyy, ...

 $h \tilde{\ell}_L \tilde{\ell}_R$ muon g-2, hyy, ...

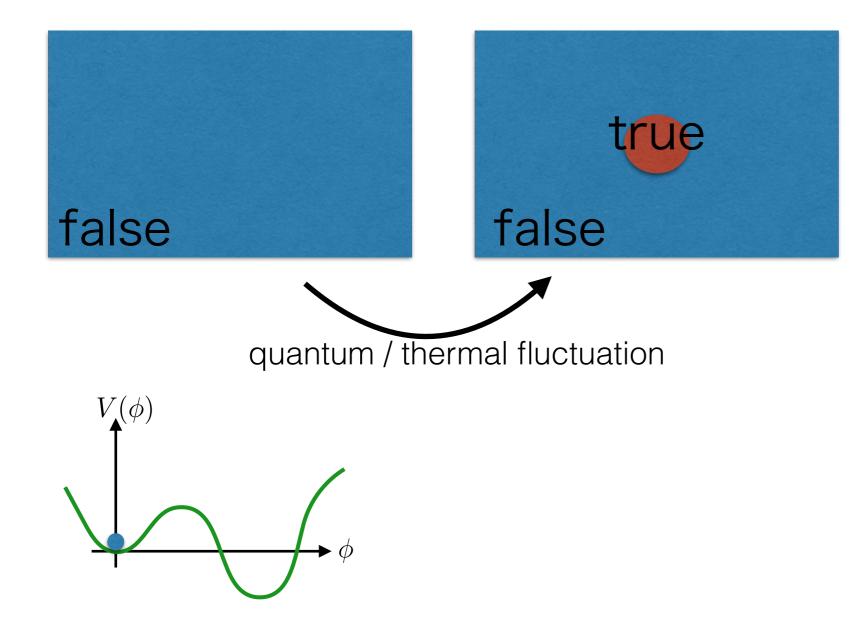
Effective potential ex.) Standard Model

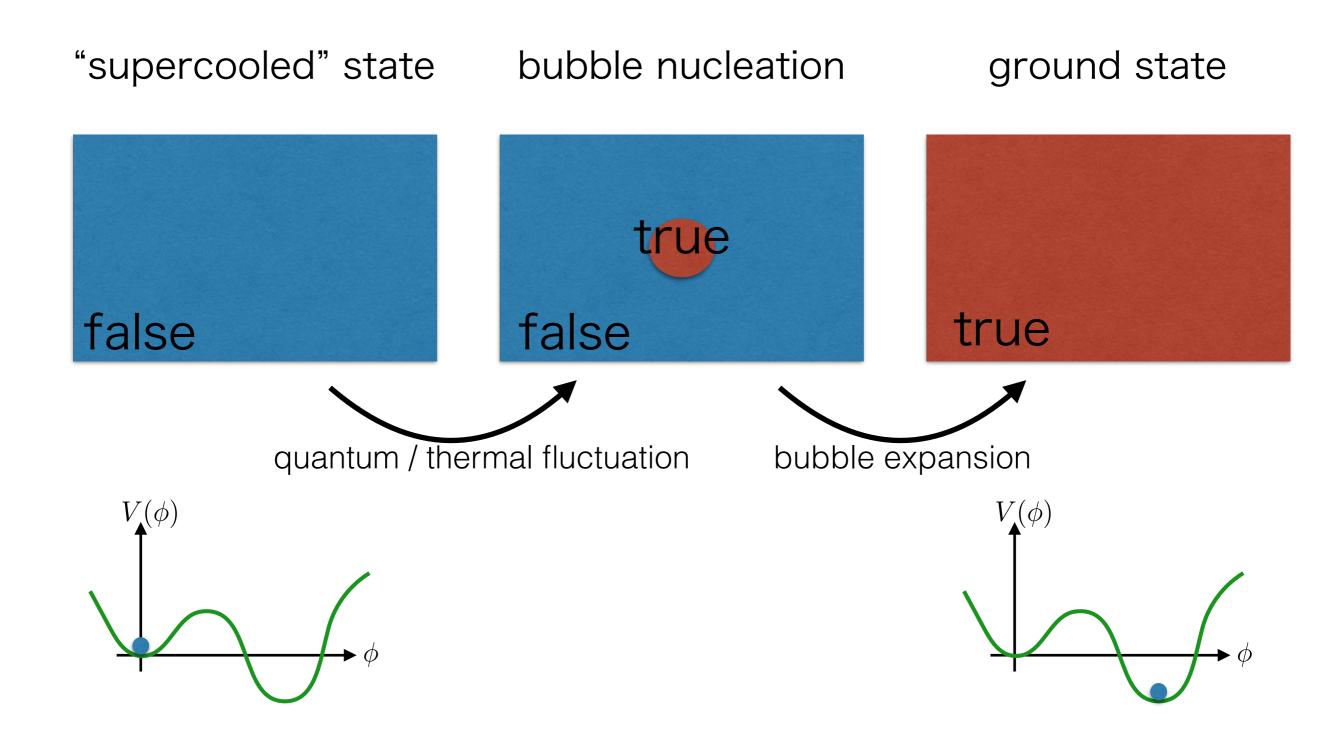


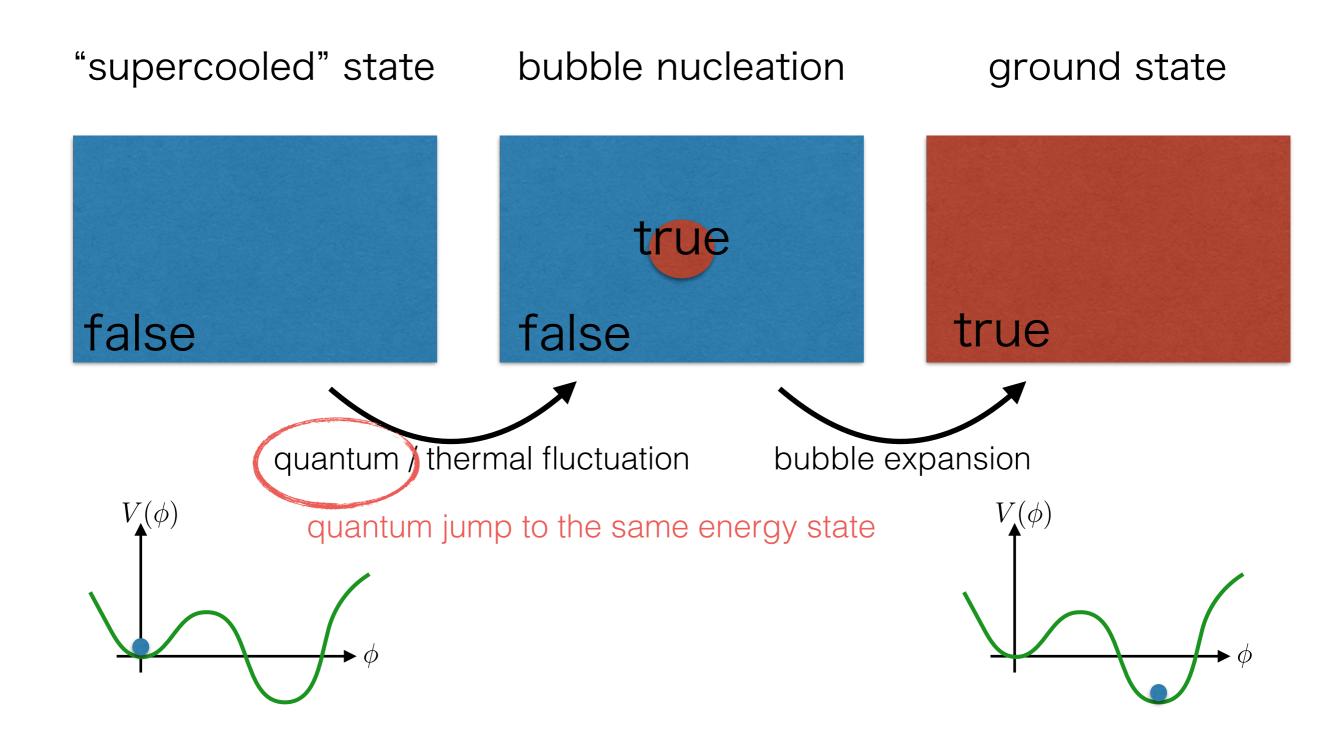
"supercooled" state



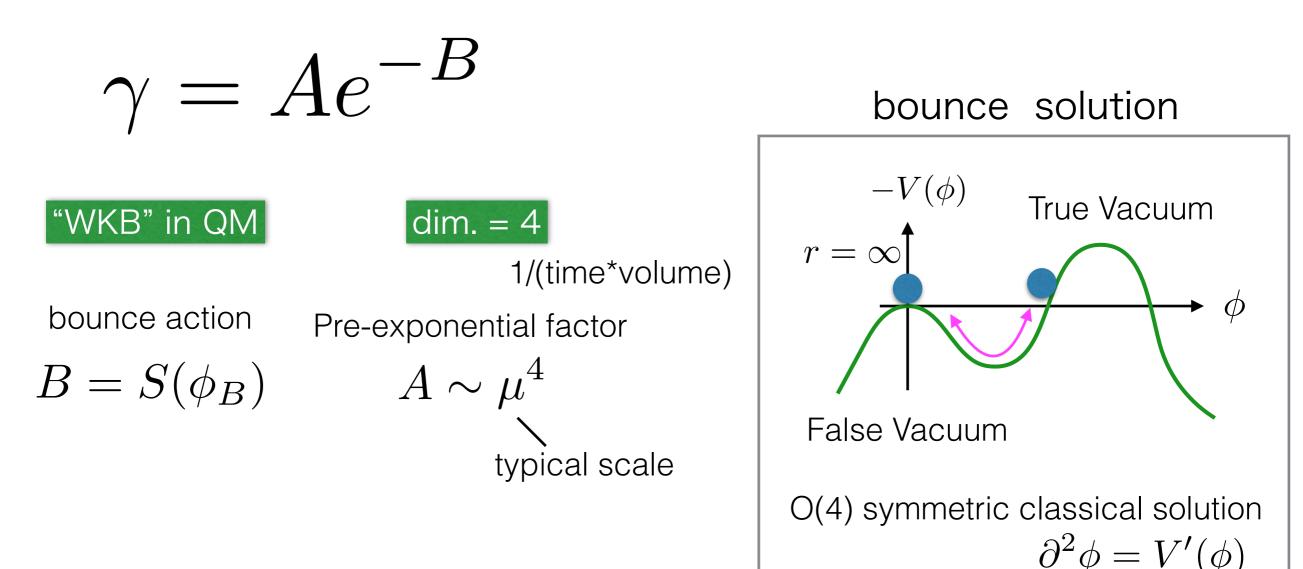
"supercooled" state bubble nucleation



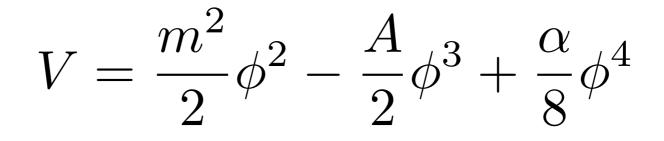


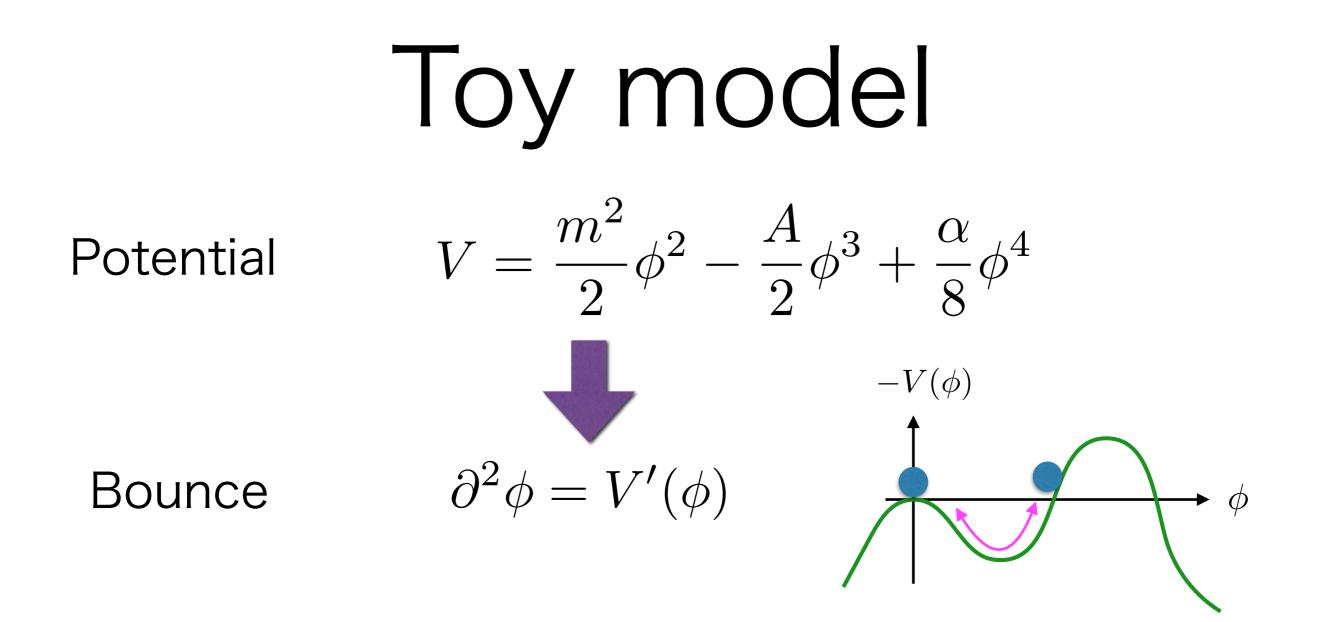


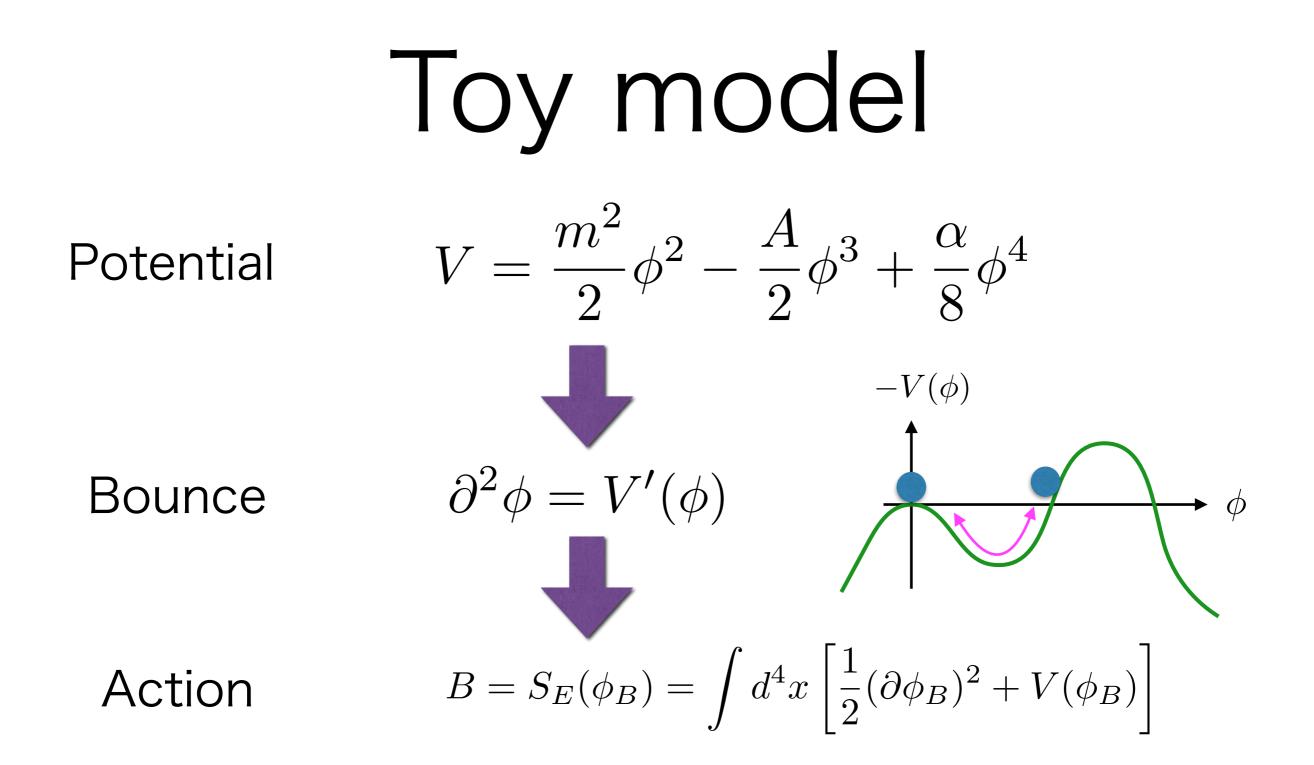
Bubble nucleation rate

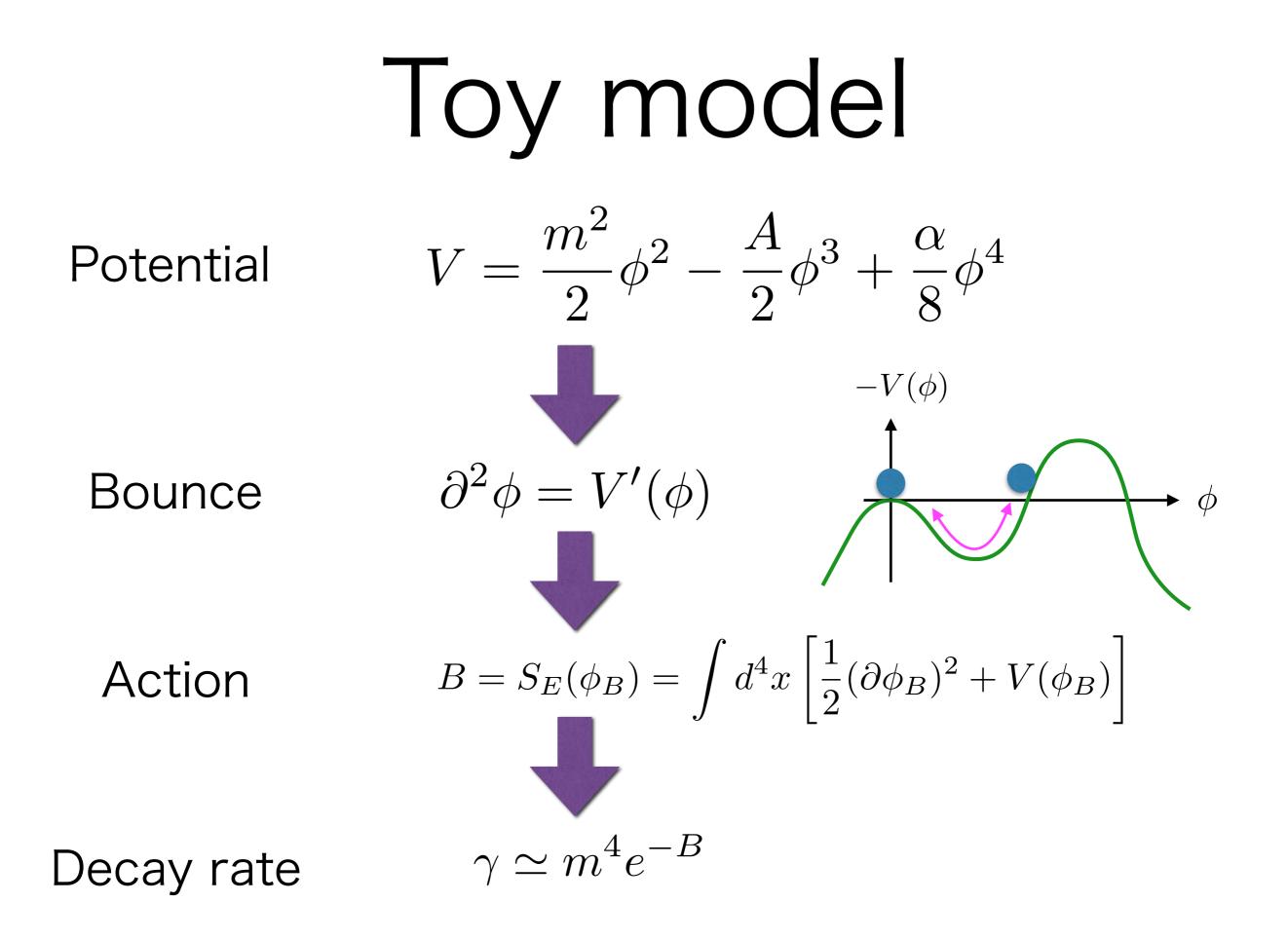


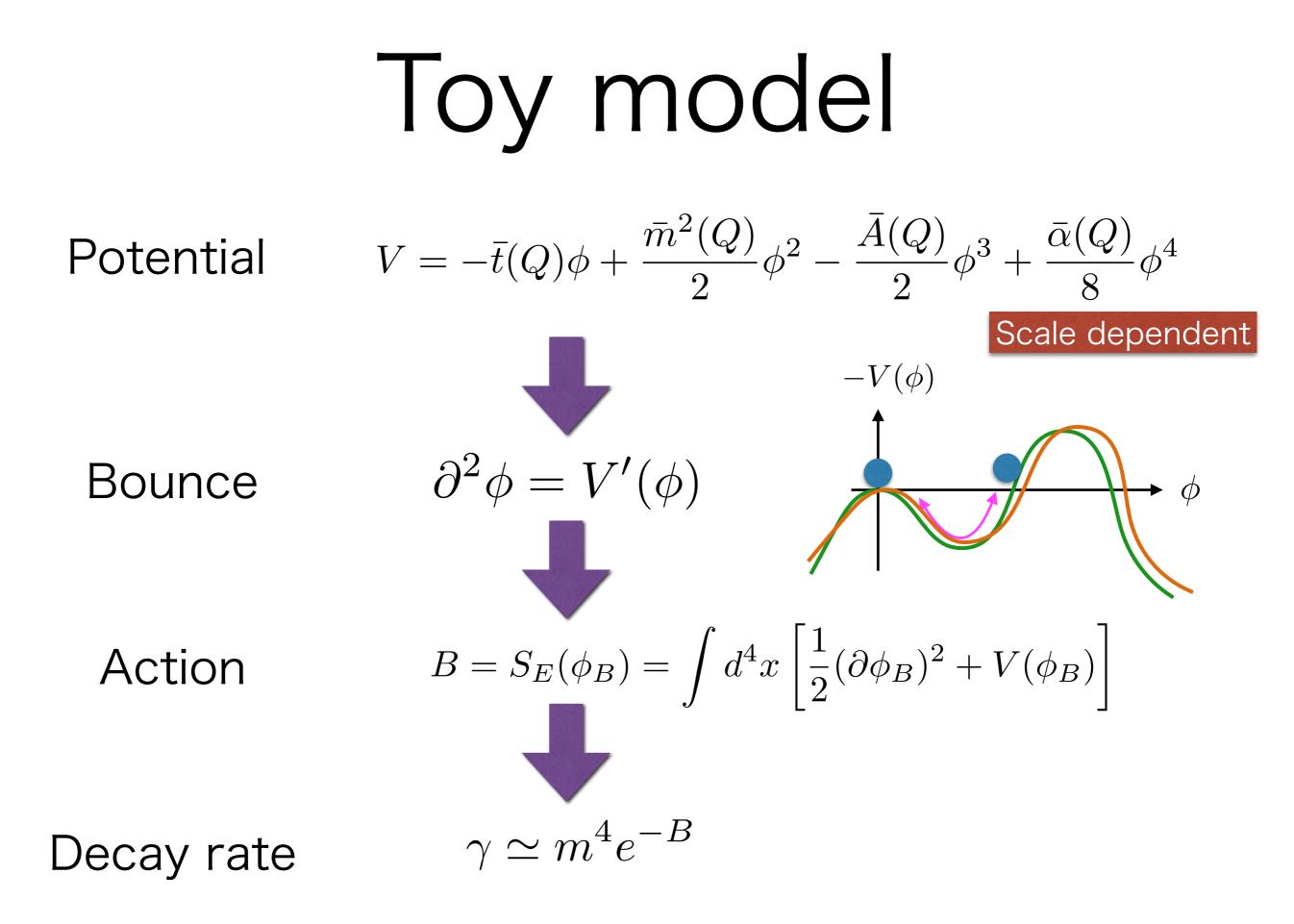
Toy model





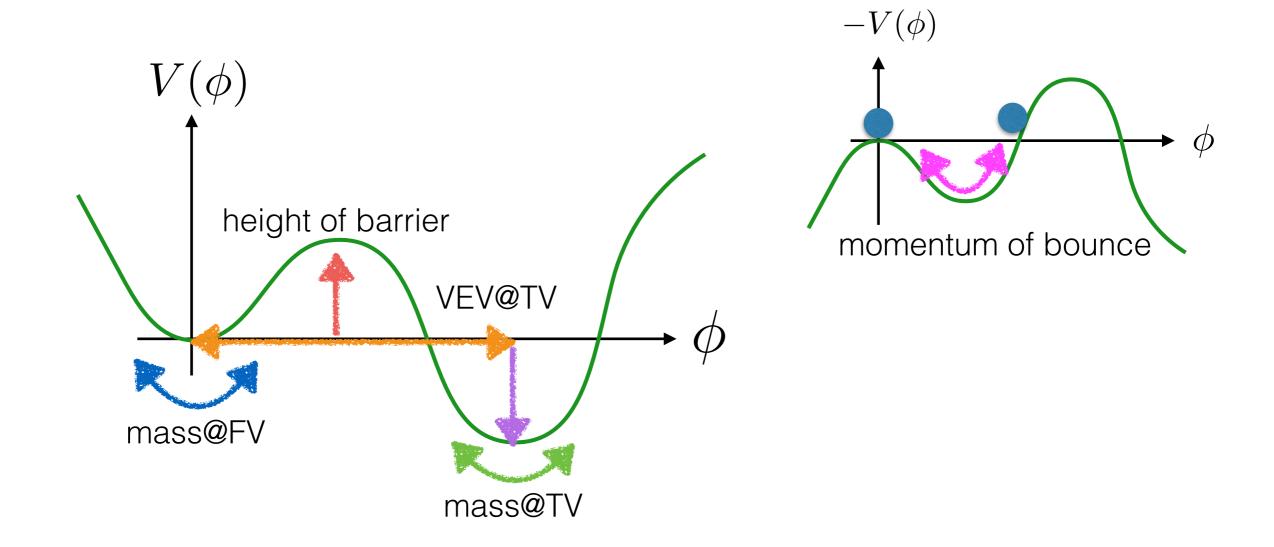






Scale?

Renormalization scale



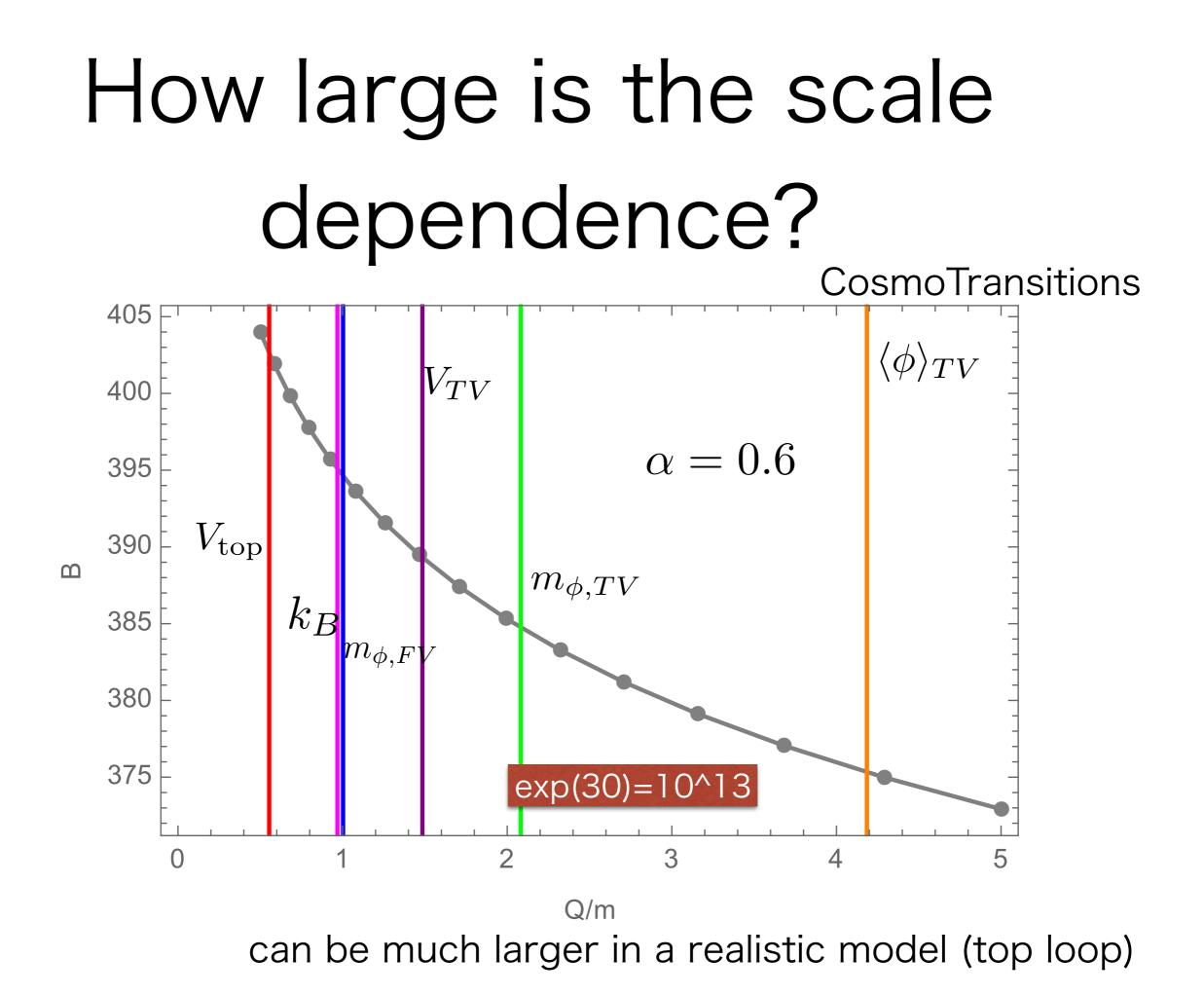
There are too many relevant scales…

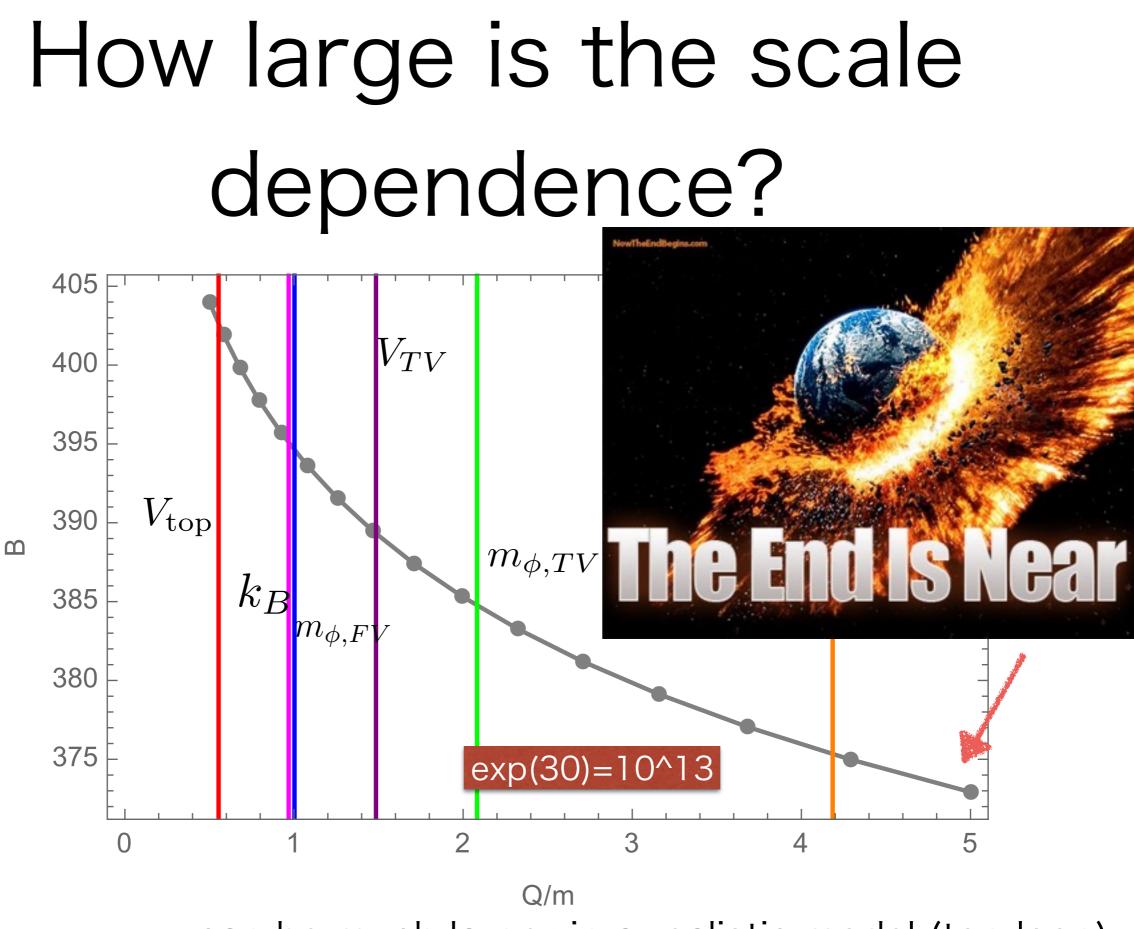
How large is the scale dependence? $V = -\bar{t}(Q)\phi + \frac{\bar{m}^{2}(Q)}{2}\phi^{2} - \frac{A(Q)}{2}\phi^{3} + \frac{\bar{\alpha}(Q)}{2}\phi^{4}$ Beta functions $\beta_{t} = \frac{3Am^{2}}{16\pi^{2}} \qquad \beta_{m^{2}} = \frac{3}{16\pi^{2}}(\alpha m^{2} + 3A^{2})$ $\beta_{A} = \frac{9\alpha A}{16\pi^{2}} \qquad \beta_{\alpha} = \frac{9\alpha^{2}}{16\pi^{2}}$

Renormalization conditions

@
$$Q = m$$

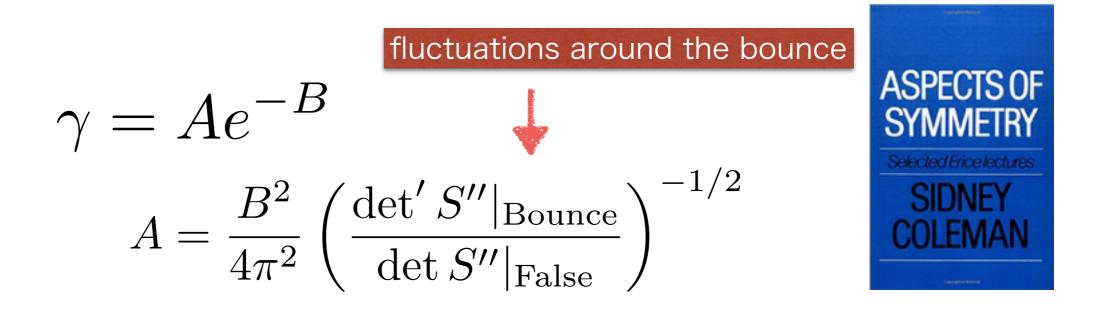
 $\bar{m}^2(m) = m^2, \ \bar{A}(m) = m, \ \bar{t}(m) = 0, \ \bar{\alpha}(m) = \alpha$

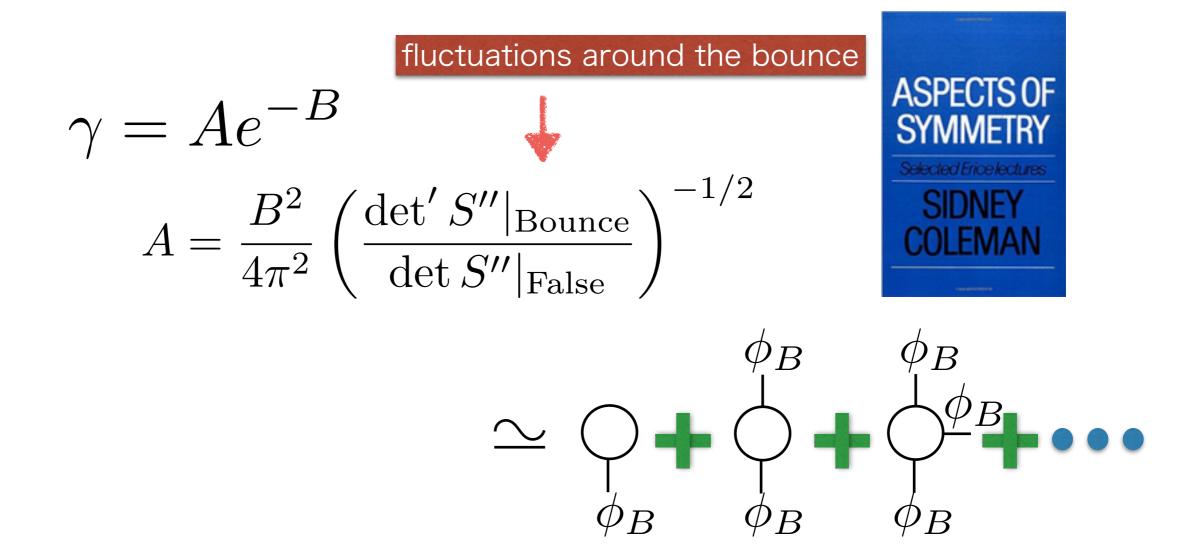


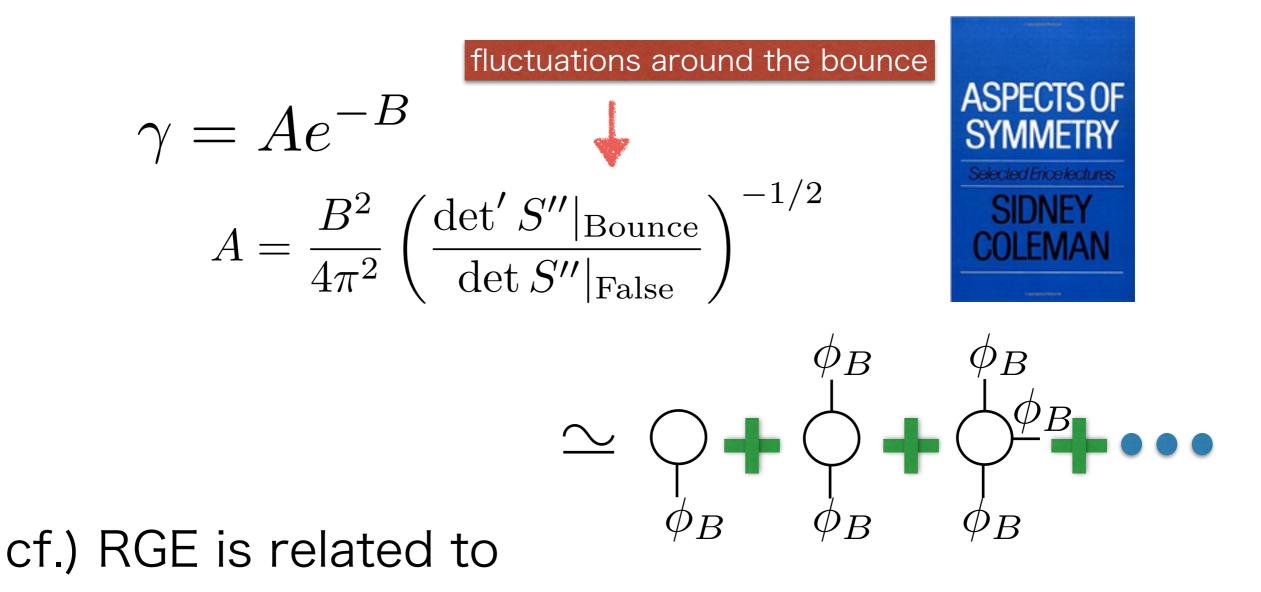


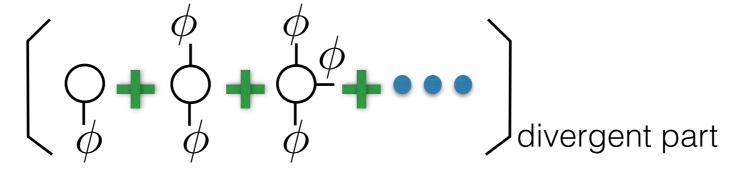
can be much larger in a realistic model (top loop)

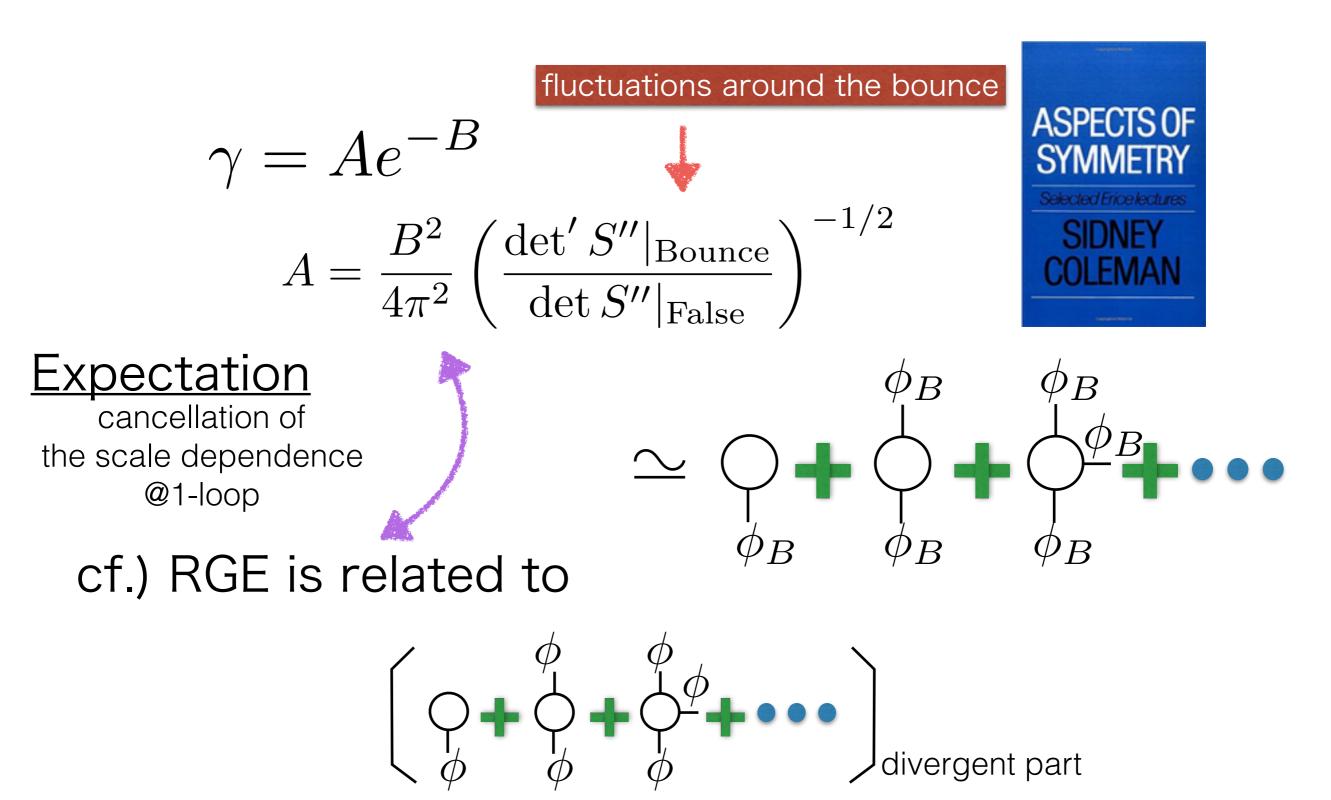
1-loop calculation







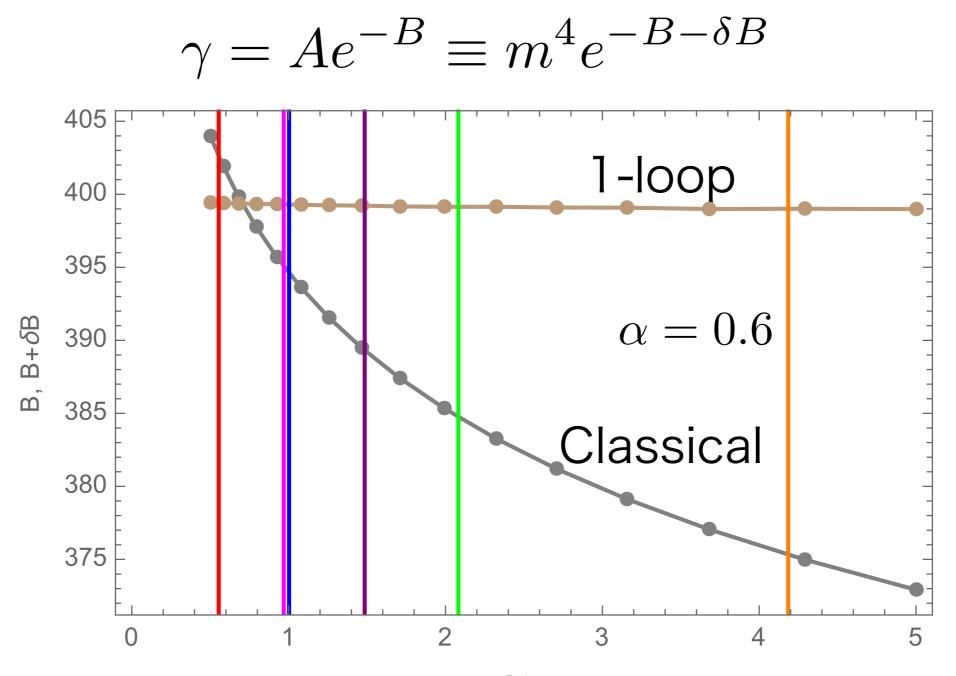




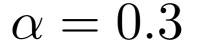
After a long,

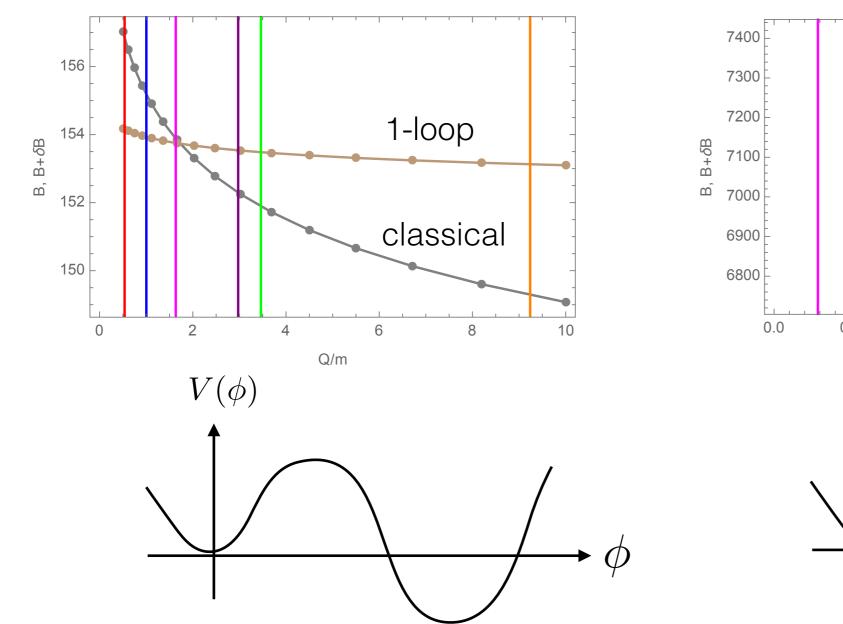
and long

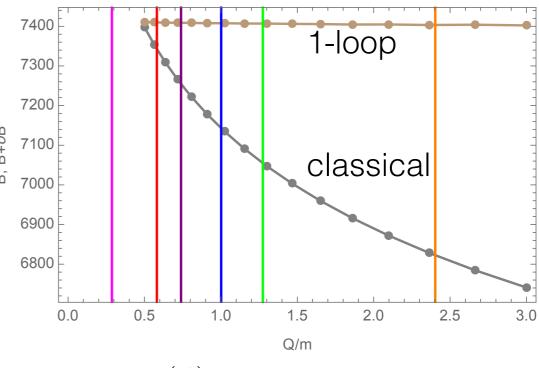
calculation,



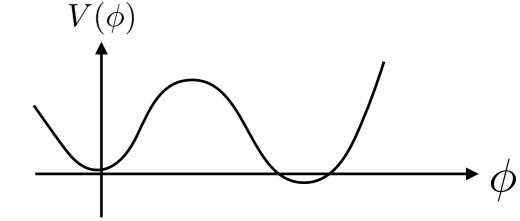
Q/m







 $\alpha = 0.9$



SM + stau system

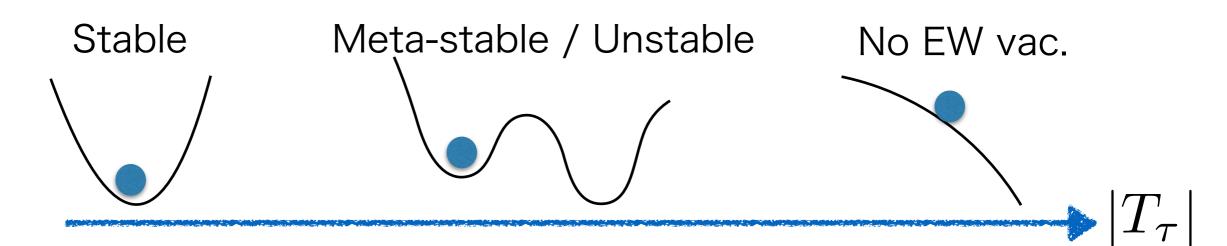
Light stau

Stau can be light

$$m_{\tilde{\tau}} > 103.5 {\rm GeV} ~{\rm (LEP)} \\ {\rm h}\, \gamma \, \gamma \, {\rm coupling, \, co-annihilation \, with \, bino, \, \cdots}$$

But, the potential may become unstable towards the stau direction

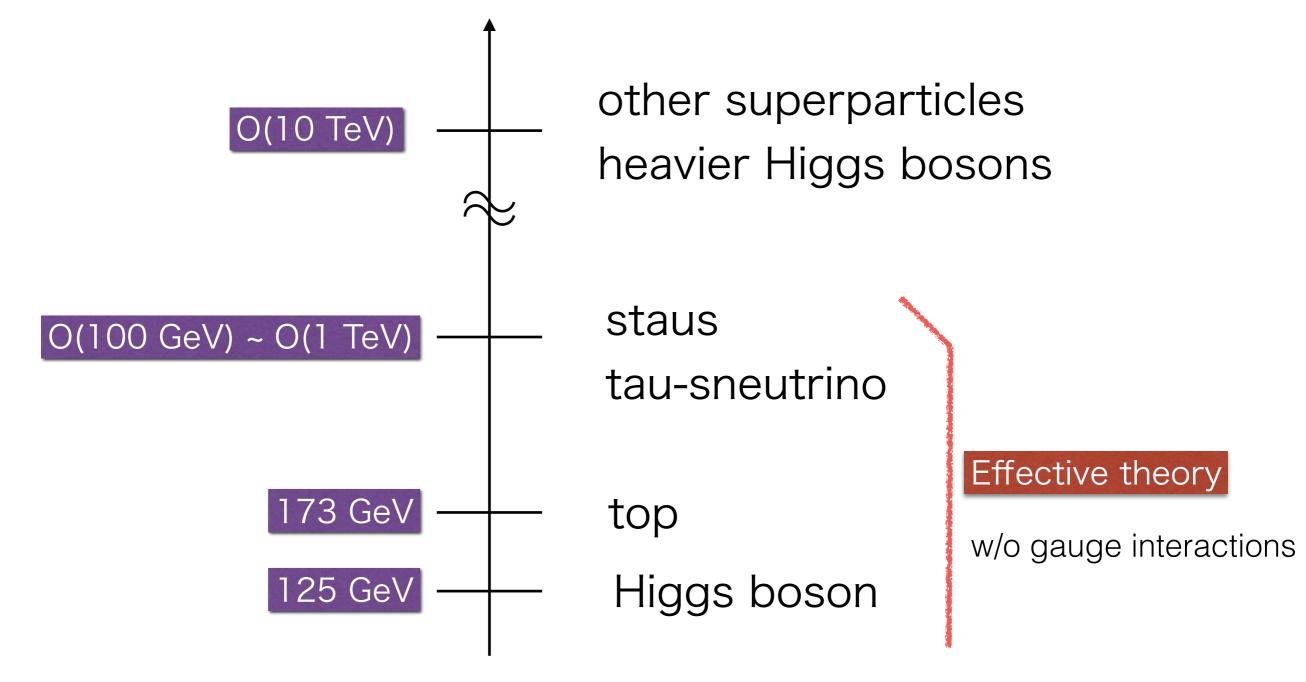
$$V = T_{\tau} (H^{\dagger} \tilde{\ell}_L \tilde{\tau}_R^* + h.c.) + m_{\tilde{\ell}_L}^2 |\tilde{\ell}_L|^2 + m_{\tilde{\tau}_R}^2 |\tilde{\tau}_R|^2 + \cdots \frac{T_{\tau} = y_{\tau} (A_{\tau} - \mu \tan \beta)}{\tan \beta = \langle H_u^0 \rangle / \langle H_d^0 \rangle}$$



Spectrum

For simplicity,

we assume only the staus are light



Effective theory

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{kin}} - y_t (Hq_L t_R^c + \text{h.c.}) - m_H^2 |H|^2 - \frac{1}{4} \lambda_H |H|^4 - m_{\tilde{\ell}_L}^2 |\tilde{\ell}_L|^2 - m_{\tilde{\tau}_R}^2 |\tilde{\tau}_R|^2 - T_\tau (H^\dagger \tilde{\ell}_L \tilde{\tau}_R^* + \text{h.c.}) - \frac{1}{4} \kappa^{(1)} |\tilde{\ell}_L|^4 - \frac{1}{4} \kappa^{(2)} |\tilde{\tau}_R|^4 - \frac{1}{4} \lambda^{(1)} |H|^2 |\tilde{\ell}_L|^2 - \frac{1}{4} \lambda^{(2)} |H^\dagger \tilde{\ell}_L|^2 - \frac{1}{4} \lambda^{(3)} |H|^2 |\tilde{\tau}_R|^2 - \frac{1}{4} \kappa^{(3)} |\tilde{\ell}_L|^2 |\tilde{\tau}_R|^2,$$

stau mass

Boundary conditions

EW scale $y_t = \frac{M_t}{v}, \qquad \qquad m_{\tilde{\tau}} \equiv m_{\tilde{\ell}_L} = m_{\tilde{\tau}_R} = 250 \,\text{GeV}, \\ T_\tau = 300 \,\text{GeV}.$ $m_H^2(M_t) = -\frac{1}{2}M_h^2,$ $\lambda_H(M_h) = \frac{M_h^2}{2w^2},$

SUSY scale (10TeV)

$$\lambda^{(1)}(M_{SUSY}) = (g^{2} + g'^{2}) \cos 2\beta,$$

$$\lambda^{(2)}(M_{SUSY}) = 4y_{\tau}^{2} - 2g^{2} \cos 2\beta,$$

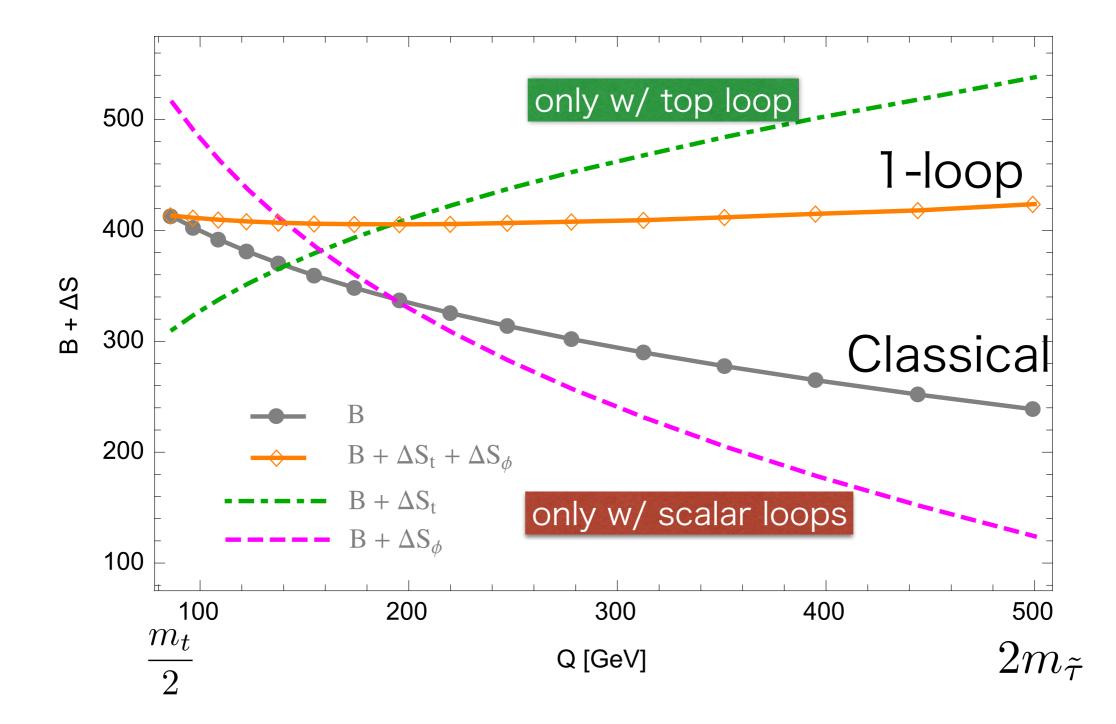
$$\lambda^{(3)}(M_{SUSY}) = 4y_{\tau}^{2} - 2g'^{2} \cos 2\beta,$$

$$\kappa^{(1)}(M_{SUSY}) = \frac{1}{2}(g^{2} + g'^{2}),$$

$$\kappa^{(2)}(M_{SUSY}) = -\kappa^{(3)}(M_{SUSY}) = 2g'^{2},$$

$$\tan \beta = 20$$

Result



Summary

- The bubble nucleation rate has often been estimated without calculating the pre-exponential factor.
- This estimate involves uncertainty in the renormalization scale, which, we showed, results in O(10%) uncertainty in the exponent of the bubble nucleation rate.
 - To reduce the uncertainty, we explicitly calculated the preexponential factor and showed that it is greatly reduced.
- Scalars and fermions have already been implemented, but the gauge bosons are now ongoing.

Theorem

$$\gamma = Ae^{-B}$$

$$\ln A^{-2} = \ln \frac{\det \left[-\partial^2 + m_0^2 + \delta \tilde{W} \right]}{\det \left[-\partial^2 + m_0^2 \right]}$$

<u>Iheorem</u> (Dirichlet BC) (J. H. van Vleck, '28; R. H. Cameron and W. T. Martin, '45; ...) The ratio of the determinant of differential operators,

$$L_j = -\frac{d^2}{dx^2} + R_j(x) \quad \text{on} \quad I = \begin{bmatrix} 0,1 \end{bmatrix} \quad \mbox{w/Diriclet BC} \\ f(0) = 0, \ f(1) = 0 \label{eq:L_j}$$

is given by the ratio of the solutions of differential equations

$$\frac{\text{Det}L_1}{\text{Det}L_0} = \frac{y_1(1)}{y_0(1)} \qquad L_j y_j(x) = 0 \\ y_j(0) = 0, \ y'_j(0) = 1$$