

LHCの最新結果

Koji Nakamura (KEK) on behalf of ATLAS&CMS collaboration

26th March, 2016

Contents

- 13TeVで再開した今年度の状況
 加速器の様子
- LHC 13TeVでの最新結果

 Higgs粒子の再探索
 VVやγγに見つかった怪しい兆候
 SUSY/Exotic の探索
- (来年度のLHCともっと先の話)

Large Hadron Collider (LHC)

26th March, 2016

LHC and ATLAS/CMS experiment

26th March, 2016

13TeVで再開した今年度の状況

26th March, 2016

2015年の運転

- 重心系エネルギーを13TeV (6.5TeV x 6.5TeV)へ
 – Dipoleマグネットのクエンチト レーニング
 - ・50回近く必要なセクター有
 - 13TeV衝突のStartが遅れる原因
- Luminosityを上げるのに苦戦
 - Electron Cloud 問題
 - Scrubbing が必要だった。
 - Unidentified Falling Object (UFO)

2015年の運転

・2015年の予定 (2015年3月時)→実際は...

26th March, 2016

2015年の運転

26th March, 2016

peak luminosity [10³⁴ cm⁻²s⁻¹] in IP1/5

max. stored energy [MJ]

140

>0.7

270

~0.5

362

1.0

13TeVの恩恵

・エネルギーを8TeVから13(14)TeVにあげる

26th March, 2016

13TeVの恩恵

エネルギーを8TeVから13(14)TeVにあげる

26th March, 2016

LHC 13TeVでの最新結果

- Higgs粒子の再探索
- VVやγγに見つかった怪しい兆候
- ・ SUSY/Exotic の探索

Higgs production and decay @ LHC

@125.5GeV

Process	8TeV σ [pb]	14TeV σ [pb]	ZZ		■ bb (57%) ■ cc (2.9%)
Gluon Fusion	19.1	49.9			🔳 ττ(6.2%)
Vector Boson Fusion	1.57	4.18	ww	bb	■ μμ(0.02%)
W/Z Associated	1.11	2.39		55	γγ(0.23%)
tt/bb Associated	0.128	0.611	πτ		■ VV VV (22%) ■ 77 (2.8%)
	8TeV @125 14TeV @12	.5GeV 5GeV	ΥΥ V		 others

26th March, 2016

まず、Run1のおさらい

Channel	Signal stre	ength [µ]	Signal sign		
	from	results in this	s paper (Sectio	n 5.2)	_
	ATLAS	CMS	ATLAS	CMS	501
$H \rightarrow \gamma \gamma 2^{\circ}$	$1.15_{-0.25}^{+0.27}$	$1.12_{-0.23}^{+0.25}$	5.0	5.6	
	$\binom{+0.26}{-0.24}$	$\binom{+0.24}{-0.22}$	(4.6)	(5.1)	
$H \rightarrow ZZ \rightarrow 4\ell$	$1.51^{+0.39}_{-0.34}$	$1.05^{+0.32}_{-0.27}$	6.6	7.0	
400	$\binom{+0.33}{-0.27}$	$\binom{+0.31}{-0.26}$	(5.5)	(6.8)	
$H \rightarrow T W$	$1.23^{+0.23}_{-0.21}$	$0.91^{+0.24}_{-0.21}$	6.8	4.8	
	$\binom{+0.21}{-0.20}$	$\binom{+0.23}{-0.20}$	(5.8)	(5.6)	301
$H \to \tau \tau$	$1.41^{+0.40}_{-0.35}$	$0.89^{+0.31}_{-0.28}$	4.4	3.4	
	$\binom{+0.37}{-0.33}$	$\binom{+0.31}{-0.29}$	(3.3)	(3.7)	
$H \rightarrow bb$	$0.62^{+0.37}_{-0.36}$	$0.81^{+0.45}_{-0.42}$	1.7	2.0	
	$\binom{+0.39}{-0.37}$	$\binom{+0.45}{-0.43}$	(2.7)	(2.5)	_
$H \to \mu \mu$	-0.7 ± 3.6	0.8 ± 3.5			
	(±3.6)	(±3.5)			
ttH production	$1.9^{+0.8}_{-0.7}$	$2.9^{+1.0}_{-0.9}$	2.7	3.6	-
	$\binom{+0.72}{-0.66}$	$\binom{+0.88}{-0.80}$	(1.6)	(1.3)	

- Classify the Higgs search/measurement study by decay modes.
- 5σ observation of γγ, ZZ and WW channel.
- Need more data for H->bb and gg->ttH production.
- Longer time project for H->μμ (HL-LHC?)

Results Production and Decay (sensitivity)

26th March, 2016

Mass of observed Boson

ATLAS & CMS has been published in March 2015
 M_H = 125.09 ± 0.24 GeV [±0.21 (stat.) ±0.11(syst.)]

- This result was important to measure coupling deviation from SM

Constraints on Higgs coupling

26th March, 2016

Higgsの前に... Top Quark 再発見 Top quark対生成 Top 単一生成 Dilepton **Top Quark** $\sigma_{t\bar{t}} = 803 \pm 7 \text{ (stat)} \pm 27 \text{ (syst)} \pm 45 \text{ (lumi)} \pm 12 \text{ (beam) pb}$ = 133 ± 6 (stat.) ± 24 (syst.) ± 7 (lumi.) pb $\sigma(tq)$ $\sigma_{t\bar{t}} = 749 \pm 57 \text{ (stat) } \pm 79 \text{ (syst) } \pm 74 \text{ (lumi) pb}$ Anti-Top Quark Lepton+jets = 96 ± 5 (stat.) ± 23 (syst.) ± 5 (lumi.) pb. $\sigma(\bar{t}q)$ $\sigma_{t\bar{t}} = 817 \pm 13 \text{ (stat)} \pm 103 \text{ (syst)} \pm 88 \text{ (lumi) pb}$ $\sigma_{tq} = 136.0^{+5.4}_{-4.6} \text{ pb}$ **Theory Prediction** $\sigma_{\bar{t}q} = 81.0^{+4.1}_{-3.6} \text{ pb}^s$ t-channel Theory Prediction $832_{-46}^{+40} \text{ pb}$ $g_{\overline{u}}$ $t\overline{t}$ pair (*l*+jets) nclusive cross-section [pb] ATLAS Preliminary Inclusive tt cross section [pb] December 2015 Tevatron combined 1.96 TeV (L = 8.8 fb) ATLAS+CMS Preliminary Mar 2016 t-channel single top-quark production ATLAS eµ 7 TeV (L = 4.6 fb⁻¹) CMS eµ 7 TeV (L = 5 fb⁻¹) LHC*top*WG 10^{3} ATLAS eµ 8 TeV (L = 20.3 fb⁻¹) CMS eu 8 TeV (L = 19.7 fb⁻¹) LHC combined eµ 8 TeV (L = 5.3-20.3 fb¹) ATLAS eµ 13 TeV (L = 3.2 fb⁻¹) CMS eµ 13 TeV (L = 43 pb⁻¹) 10² ATLAS ee/uu 13 TeV (L = 85 pb⁻¹) ATLAS I+jets 13 TeV (L = 85 pb⁻¹) O CMS I+jets 13 TeV (L = 42 pb⁻¹) 1000 top+antitop 10² 800 stat 4.59 fb⁻¹ PRD 90 112006 (2014) 600 tota top 20.3 fb⁻¹ ATLAS-CONF-2014-007 NNLO+NNLL (pp) 3.2 fb⁻¹ ATLAS-CONF-2015-079 13 Is [TeV] NNLO+NNLL (pp) 10 NLO NPPS205 (2010) 10, CPC191(2015) 74 Czakon, Fiedler, Mitov, PRL 110 (2013) 252004 $m_{top} = 172.5 \text{ GeV}, \mu_p = \mu_e = m_{top}$ $m_{top} = 172.5 \text{ GeV}, \text{PDF} \oplus \alpha_{S}$ uncertainties according to PDF4LHC antitop CT10nlo, MSTW2008nlo, NNPDF2.3nlo (PDF4LHC) 10 12

26th March, 2016

理論計算と非常に良い一致

Theory WS @ Matsue

^{(S[TeV]} 理論計算と非常に良い一致

√s [TeV]

Н→үү

- 3.2fb-1データでdi-photon spectrumをみる
 - SignalltCrystal Ball + Gaussian
 - Backgroundは単調減少 Analytical function
- Backgroundの中でReal yy の割合は78%
- Nsig = $113 \pm 74^{+43}_{-25}$
- 感度: 1.5σ(1.9σ) obs(exp)

 $40 \pm 26 \text{ (stat.)} ^{+16}_{-10} \text{ (syst.)} \pm 2 \text{ (lumi.)}$

 22.3 ± 2.0

 $50.9 \begin{array}{c} +4.5 \\ -4.4 \end{array}$

26th March, 2016

 \sqrt{s}

 $7 \,\mathrm{TeV}$

8 TeV

 $13 \,\mathrm{TeV}$

Theory WS @ Matsue

 $H^{\overline{t}/\gamma}$

t/W

- m_{4l} spectrum
- 118<m_{4l}<129GeV
 - Signal exp = 4.57 ± 0.54
 - Bkg exp = 2.1 \pm 0.2
 - Observed 4 event.
- $N_{sig}^{fit} = 1^{+2.3}_{-1.5}$
- ・感度:0.7σ(2.8σ) obs(exp)

Data set [TeV]	$N_{ m s}$	$\sigma_{4\ell}^{\mathrm{fid}} \; \mathrm{[fb]}$	$\sigma_{\rm theory}^{\rm fid}$ [fb]	$\sigma^{\rm tot} \ [{\rm pb}]$	$\sigma_{\rm theory}^{\rm tot} \; [{\rm pb}]$
7	$4.5 \ ^{+2.8}_{-2.2}$	$1.9 \ ^{+1.2}_{-0.9}$	1.03 ± 0.11	$33 \ ^{+21}_{-16}$	17.5 ± 1.6
8	$24.0 \ ^{+6.0}_{-5.3}$	2.1 ± 0.5	1.29 ± 0.13	$37 \ ^{+9}_{-8}$	22.3 ± 2.0
13	$1.0 \ ^{+2.3}_{-1.5}$	$0.6 \ ^{+1.3}_{-0.9}$	2.74 ± 0.28	$12 \begin{array}{c} +25 \\ -16 \end{array}$	$50.9 \ ^{+4.5}_{-4.4}$

H→ZZ : High Mass resonance

- 探索領域を1TeVまで拡張 significantなexcessはなし
- σ x BR(s→ZZ→4I)に対する95%CL limit を設定

26th March, 2016

MSSM A→ττ

SM Higgs H→ττはまだ感度がないが、MSSMは探索可能

26th March, 2016

MSSM A→Zh

- 標準理論ZH→IIbb,vvbb解析をHigh massまでextend.
- pTZ>500GeVはH→bbは1 fat jet (boost)として解析

26th March, 2016

LHC 13TeVでの最新結果

- Higgs粒子の再探索
- VVやγγに見つかった怪しい兆候
- ・ SUSY/Exotic の探索

8TeV di-boson results

26th March, 2016

VV→JJ 探索 @ 13TeV

- ・8TeVの解析を13TeVデータにアプライ。
- m_{qq}でWZ,WW,ZZ selectionを定義 →2TeVのexcessは無い様に見える…

26th March, 2016

VV → Leptonic decay

 VV→JIに加えて WW/WZ→IvJ ZW/ZZ→IIJ leptonic decay も 解析 W/Z W/Z → 有意な超過なし WZ selection WZ selection 10^{3} Events / GeV Events Data 🗕 Data ATLAS Preliminary Preliminary ATLAS W+iets HVT model A 1.5 TeV √s = 13 TeV ∫ Ldt = 3.2 fb⁻¹ 10² $\sqrt{s} = 13 \text{ TeV}$. 3.2 fb⁻¹ Top quark Z + jets ZW signal region WZ Signal Region Dibosons SM Diboson 10^{2} Z+jets Top Quarks 10 HVT m = 1.6 TeV Stat. Syst. Uncert. ////// Fit tot. unc. Pre-fit background 10 IνJ IIJ 10-1 1.0 10-2 10-1 10⁻³ 10 10^{-4} 2.0 Data/Pred Data/MC 0.0 2500 500 1000 1500 2000 3000 500 1000 1500 2000 2500 3000 m(*llJ*) [GeV] m_{w1}[GeV]

26th March, 2016

Di-Photon 探索 (Dec 2015)

- Di-boson (750GeV)に local(global)3.9(2.3)ののexcess
- Width/t/m=6% (Γ=45GeV)

Di-Photon 探索(CMS)

- Barrel-Barrel eventにExcess有 (Barrel-Endcapは微妙)
- 8TeVと13TeV両方にexcessが見られるが massが少し違う。
- 13TeV : Local(global) 2.6(<1.2)σ@760GeV
- 8TeV : Local (global) 3.0(<1.7)σ @750GeV for κ/M_{Pl}=0.01(RS Graviton) i.e. narrow

26th March, 2016

再解析 for Moriond

- Spin-0 Higgs解析とSpin-2 Graviton解析の二通り行った。 (Spin-2解析はもともと>3TeVあたりをターゲットだった)
- 共通セレクション

– Tight photon ID with Diphoton トリガー

- Spin0 Higgs解析
 - $E_{T}^{\gamma 1(2)} > 0.4(0.3) m_{\nu \nu}$
 - 750GeVでE_T^{γ1}>300GeV
- Spin2 Graviton解析
 - $E_T^{\gamma 1,2} > 55 GeV$
 - Spin0よりlooseなカットでForward Eventにも高いアクセプタンス

再解析 for Moriond

• Spin-0 Higgs 解析

• Spin-2 Graviton 解析

26th March, 2016

再解析 for Moriond

Local (global) 3.9(2.0)σ @ 750GeV, Γ/m=6% (Γ=45GeV) • Spin-2 Graviton 解析

Local (global) 3.6(1.8)σ @ 750GeV, Γ/m=7% (κ/M_{Pl}=0.2)

8TeV data 再解析

Local 1.9σ @ 750GeV, Γ/m=6% (Γ=45GeV) Compatibility with 13TeV gg(qq) process 1.2(2.1)σ 有意な兆候なし Compatibility with 13TeV gg(qq) process 2.7(3.3)σ

LHC 13TeVでの最新結果

- Higgs粒子の再探索
- VVやγγに見つかった怪しい兆候
- ・ SUSY/Exotic の探索

強い相互作用で生成するSUSY(1,2世代)

- 断面積が大きくコライダーのエネルギーが届けばすぐに見つかる。
- (2-6)Jets + large MET
- 背景事象はZ(→vv)+jets, Top

>=2 lepton channel

26th March, 2016

Run2 から HL-LHC

26th March, 2016

アップグレード計画

・ちょっと複雑ですが...

26th March, 2016

余談:ボトム湯川の話

- LEP II の最後:3事象のエクセス
- Tevatron Run II の最後 : 2.8σ @ 125GeV
- ATLAS Run I \mathcal{O} Full data : 1.4 σ (2.6 σ exp.)

→ なぜか呪われたように見つからない...

Theory WS @ Matsue

u

 \overline{d}

 $W*^+$

Н

 $WH \rightarrow l v bb$

Yb@13/14TeV
 <u>今までのVH,H->bb process</u>
 13TeV 10fb⁻¹のデータを加えれば
 7TeV+8TeV+13TeVで3σ(expected)
 但し、7+8TeVのobserved が低いので
 発見のクレームは2016年かも?

<u> 強力な助っ人</u>

今まで断面積が小さくマイナーチャンネル だったが、3.9倍の断面積で追い上げ。 13TeV 55fb⁻¹のデータで3o(expected) 発見のクレームは2016年? 同時にトップ湯川の発見もクレーム!

2016年はボトム湯川の年になる!?

物理の背景:ルミノシティ・

物理の背景:ルミノシティー

- 300→3000fb⁻¹が必要か?
 - 新しい物理
 - ヒッグスの測定
 - 結合定数の測定、稀崩壊の探索

ATLAS Simulation Preliminary $\sqrt{s} = 14 \text{ TeV}: \left[\text{Ldt} = 300 \text{ fb}^{-1} \right]; \left[\text{Ldt} = 3000 \text{ fb}^{-1} \right]$

(comb.)

 $H \rightarrow \gamma \gamma$

26th March, 2016

物理の背景:ルミノシティ-

Η

- 300→3000fb⁻¹が必要か?
 - 新しい物理

 λ_{HHH}

 $gg \rightarrow HH$

 $qq' \rightarrow HHqq'$

.00000000

0000000

Cross section in fb⁻¹

1000

100

10

0.1

- ヒッグスの測定
 - 結合定数の測定、稀崩壊の探索

 $\sigma(\mathbf{pp} \rightarrow \mathbf{HH} + \mathbf{X})$ [fb] $\sqrt{s} = 14 \text{ TeV}, M_{\text{H}} = 125 \text{ GeV}$

自己結合の探索

o(HHH無)/o(HHH有)~2 gg->HH σ [fb⁻¹] gg→HH→bbγγだけで @ 14TeV 1.3 σ (SM HHの時) → λ_{ннн}=0を棄却/兆候 $\lambda_{\rm HHH}/\lambda^{\rm SM}_{\rm HHH}=1$ 34 fb⁻¹ → 改善する $\lambda_{\rm HHH}/\lambda^{\rm SM}_{\rm HHH}=0$ 71 fb⁻¹ → 他崩壊を足して3σ 16 fb⁻¹ $\lambda_{\rm HHH}/\lambda^{\rm SM}_{\rm HHH}=2$

26th March, 2016

 $1 \neq q\bar{q}' \rightarrow WHH$

 $q\bar{q} \rightarrow ZHH$

-5

-3

 $\lambda_{\rm HHH}/\lambda_{\rm HHH}^{\rm SM}$

-1 0 1 3

 $\mathbf{5}$

Run 1の結果から-自己結合の探索

- HH→γγbb探索
 - bb選択後のγγ質量分布に4事象のexcess
 - 2.4σのexcess (σ~1pb くらい、σ_{HH}=34fb⁻¹の30倍)
 - M_{yyjj}~300GeVくらいのresonanceにも見えなくはない。

26th March, 2016

Sory V

48

あれはやはり新粒子 なんじゃないか?

26th March, 2016

来年度には...

あれはやはり新粒子 なんじゃないか?

	Sta	atus: March 2016 Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	s = 7, 8, 13 TeV Reference
	Inclusive Searches	$\begin{array}{l} \text{MSUGRA/CMSSM} \\ \overline{q}\overline{q}, \overline{q} \rightarrow q \overline{k}_{1}^{0} \\ \overline{q}\overline{q}, \overline{q} \rightarrow q \overline{k}_{1}^{0} (\text{compressed}) \\ \overline{q}\overline{q}, \overline{q} \rightarrow q \overline{k}_{1}^{0} (\text{compressed}) \\ \overline{q}\overline{q}, \overline{q} \rightarrow q \overline{k}_{1}^{0} (\text{compressed}) \\ \overline{q}\overline{q}, \overline{q} \rightarrow q (\mathcal{U}_{1}^{0}/\nu) \overline{k}_{1}^{0} \\ \overline{g}\overline{s}, \overline{g} \rightarrow q q (\mathcal{U}_{1}^{0}/\nu) \overline{k}_{1}^{0} \\ \overline{g}\overline{s}, \overline{g} \rightarrow q q (\mathcal{U}_{1}^{1}/\nu) \overline{k}_{1}^{0} \\ \overline{g}\overline{s}, \overline{g} \rightarrow q q (\mathcal{U}_{1}^{1}/\nu) \overline{k}_{1}^{0} \\ \overline{g}\overline{s}, \overline{g} \rightarrow q q (\mathcal{U}_{1}^{0}/\nu) \\ \overline{G}\overline{M} (higsino-bino NLSP) \\ \overline{G}\overline{G}M (higgsino-bino NLSP) \\ \overline{G}\overline{G}M (higgsino-bino NLSP) \\ \overline{G}\overline{G}M (higgsino NLSP) \\ \overline{G}\overline{G}M (higgsino LSP) \\ \overline{G}\overline{M} (higgsino LSP) \\ \overline{G}\overline{M} (higgsino LSP) \end{array}$	$\begin{array}{c} 0\text{-}3 \ e, \mu/1\text{-}2 \ \tau \\ 0 \\ \text{mono-jet} \\ 2 \ e, \mu \ (\text{off}, Z) \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ r \\ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 0-3 jets 7-10 jets 0-2 jets 1 b 2 jets 2 jets 2 jets 1 b 2 jets	 b Yes Yes Yes	20.3 3.2 20.3 3.2 3.3 20 3.2 20.3 20.3 2	\$\vec{q}\$ 980 GeV \$\vec{q}\$ 980 GeV \$\vec{q}\$ 610 GeV \$\vec{q}\$ 820 GeV \$\vec{k}\$ 82 \$\vec{k}\$ 8 \$\vec{k}\$ 8 \$\vec{k}\$ 8 \$\vec{k}\$ 8 \$\vec{k}\$ 8 \$\vec{k}\$ 900 GeV \$\vec{k}\$ 900 GeV \$\vec{k}\$ 900 GeV	$\begin{array}{c c} \textbf{1.85 TeV} & \textbf{m}(\hat{q}) = \textbf{m}(\hat{z}) \\ & \textbf{m}(\hat{i}^2) = 0 \text{ GeV}, \textbf{m}(1^{14} \text{ gen.} \hat{q}) = \textbf{m}(2^{ad} \text{ gen.} \hat{q}) \\ & \textbf{m}(\hat{i}^2) = 0 \text{ GeV}, \textbf{m}(1^{14} \text{ gen.} \hat{q}) = \textbf{m}(2^{ad} \text{ gen.} \hat{q}) \\ & \textbf{m}(\hat{i}^2) = 0 \text{ GeV} \\ \textbf{1.52 TeV} & \textbf{m}(\hat{i}^2) = 0 \text{ GeV} \\ & \textbf{m}(\hat{i}^2) = 0 \text{ GeV} \\ & \textbf{m}(\hat{i}^2) = 0 \text{ GeV} \\ \textbf{1.38 TeV} & \textbf{m}(\hat{i}^2) = 0 \text{ GeV} \\ \textbf{1.4 TeV} & \textbf{m}(\hat{i}^2) = 0 \text{ GeV} \\ & \textbf{1.6 TeV} \\ \textbf{1.6 TeV} & \textbf{m}(\hat{i}^2) = 0 \text{ GeV} \\ \textbf{1.3 TeV} & \textbf{m}(\hat{i}^2) = 0 \text{ GeV} \\ \textbf{1.3 TeV} & \textbf{m}(\hat{i}^2) = 0 \text{ GeV} \\ \textbf{1.3 TeV} & \textbf{m}(\hat{i}^2) = 0 \text{ GeV} \\ \textbf{1.3 TeV} & \textbf{m}(\hat{i}^2) = 0 \text{ GeV} \\ \textbf{1.3 TeV} & \textbf{m}(\hat{i}^2) = 950 \text{ GeV}, cr(\textbf{NLSP}) < 0.1 \text{ mm}, \mu < 0 \\ \textbf{m}(\textbf{NLSP}) > 430 \text{ GeV} \\ \textbf{m}(\hat{G}) > 1.8 \times 10^{-4} \text{ eV}, \textbf{m}(\hat{g}) = \textbf{1.5 TeV} \end{array}$	1507.05525 ATLAS-CONF-2015.062 <i>To appear</i> 1503.02800 ATLAS-CONF-2015.062 ATLAS-CONF-2015.076 1501.03555 1602.06194 1407.0603 1507.05493 1507.05493 1507.05493 1507.05493 1503.02800 1502.01518
	3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow b \bar{b} \tilde{\chi}^0_1 \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow t \tilde{\chi}^0_1 \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}^1_1 \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	3.3 3.3 20.1	Ř Ř Ř	1.78 TeV m(\tilde{k}_1^n)<800 GeV 1.76 TeV m(\tilde{k}_1^n)=0 GeV 1.37 TeV m(\tilde{k}_1^n)<300 GeV	ATLAS-CONF-2015-067 To appear 1407.0600
	3 rd gen. squarks direct production	$\begin{array}{l} & \bar{b}_{1}\bar{b}_{1},\bar{b}_{1}\rightarrow b\bar{\chi}^{0}_{1} \\ & \bar{b}_{1}\bar{b}_{1},\bar{b}_{1}\rightarrow b\bar{\chi}^{1}_{1} \\ & \bar{h}_{1}\bar{c}_{1}c$	$\begin{array}{c} 0\\ 2\ e,\mu\ (\text{SS})\\ 1-2\ e,\mu\\ 0-2\ e,\mu\\ 0 \\ 1\ e,\mu \end{array}$	2 b 0-3 b 1-2 b 0-2 jets/1-2 mono-jet/c-t 1 b 1 b 6 jets + 2 b	Yes Yes Yes Yes ag Yes Yes Yes b Yes	3.2 3.2 4.7/20.3 20.3 20.3 20.3 20.3 20.3 20.3	b1 840 GeV b1 325-540 GeV c117-170 GeV 200-500 GeV c117-170 GeV 200-510 GeV c1 90-198 GeV 205-715 GeV c1 90-245 GeV 150-600 GeV c1 150-600 GeV c c1 290-610 GeV c c2 320-620 GeV 320-620 GeV	$\begin{array}{c} m(\tilde{\xi}_{1}^{0}){<}100\text{GeV} \\ m(\tilde{\xi}_{1}^{0}){=}50\text{GeV},m(\tilde{\xi}_{1}^{0}){=}m(\tilde{\xi}_{1}^{0}){+}100\text{GeV} \\ m(\tilde{\xi}_{1}^{0}){=}2m(\tilde{\xi}_{1}^{0}),m(\tilde{\xi}_{1}^{0}){=}55\text{GeV} \\ m(\tilde{\kappa}_{1}^{0}){=}1\text{GeV} \\ m(\tilde{\kappa}_{1}^{0}){=}10\text{GeV} \\ m(\tilde{\kappa}_{1}^{0}){=}250\text{GeV} \\ m(\tilde{\kappa}_{1}^{0}){=}20\text{GeV} \\ m(\tilde{\kappa}_{1}^{0}){=}0\text{GeV} \\ m(\tilde{\kappa}_{1}^{0}){=}0\text{GeV} \end{array}$	ATLAS-CONF-2015-066 1602.09058 1209.2102, 1407.0583 08616, ATLAS-CONF-2016-00 1407.0608 1403.5222 1403.5222 1403.5222
	EW direct	$ \begin{array}{l} \tilde{t}_{1,\mathbf{k}}\tilde{\ell}_{1,\mathbf{k}},\tilde{\ell} \rightarrow \tilde{\ell}\tilde{v}_{1}^{0} \\ \tilde{x}_{1}^{*}\tilde{x}_{1}^{*},\tilde{x}_{1}^{*} \rightarrow \tilde{\ell}v(\tilde{r}) \\ \tilde{x}_{1}^{*}\tilde{x}_{1}^{*},\tilde{x}_{1}^{*} \rightarrow \tilde{\ell}v(\tilde{r}) \\ \tilde{x}_{1}^{*}\tilde{x}_{1}^{*}\tilde{x}_{1}^{*} \rightarrow \tilde{r}v(\tilde{r}) \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{*} \rightarrow \tilde{k}\tilde{\ell}_{1}(\tilde{r})v, \tilde{s}\tilde{\ell}_{1,\ell}\ell(\tilde{s})v) \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{*} \rightarrow W\tilde{v}_{1}^{0}\tilde{Z}\tilde{v}_{1}^{0}, \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{*} \rightarrow W\tilde{v}_{1}^{0}\tilde{k}\tilde{k}_{1}^{*}, h \rightarrow b\tilde{b}/W/t \\ \tilde{x}_{2}^{*}\tilde{x}_{2}^{*}\tilde{x}_{2}^{*} \rightarrow \tilde{k}\ell \\ GGM (wino NLSP) weak proc \\ \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ e, \mu \\ r / \gamma \gamma e, \mu, \gamma \\ 4 \ e, \mu \\ 1 \ e, \mu + \gamma \end{array}$	0 - 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3		$\begin{split} m(\tilde{\xi}_{1}^{0})=&0~GeV\\ m(\tilde{\xi}_{1}^{0})=&0~GeV, m(\tilde{\xi}, \tilde{\gamma})=&0.5(m(\tilde{\xi}_{1}^{0})+m(\tilde{\xi}_{1}^{0}))\\ m(\tilde{\xi}_{1}^{0})=&0~GeV, m(\tilde{\tau}, \tilde{\gamma})=&0.5(m(\tilde{\xi}_{1}^{0})+m(\tilde{\xi}_{1}^{0}))\\ m(\tilde{\xi}_{1}^{0})=&m(\tilde{\xi}_{2}^{0}), m(\tilde{\xi}_{1}^{0})=&0.5(m(\tilde{\xi}_{1}^{0})+m(\tilde{\xi}_{1}^{0}))\\ m(\tilde{\xi}_{1}^{0})=m(\tilde{\xi}_{2}^{0}), m(\tilde{\xi}_{1}^{0})=&0, sleptons~decoupled\\ m(\tilde{\xi}_{2}^{0})=m(\tilde{\xi}_{2}^{0}), m(\tilde{\xi}_{1}^{0})=&0, m(\tilde{\xi}_{2}^{0})=m(\tilde{\xi}_{2}^{0}), m(\tilde{\xi}_{1}^{0})=&0, (m(\tilde{\xi}_{2}^{0})+m(\tilde{\xi}_{1}^{0}))\\ e^{-c\tau}<1~m \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493
	Long-lived particles	$\begin{array}{l} \text{Direct} \tilde{X}_1^{\dagger} \tilde{X}_1^{\top} \text{ prod., long-lived} \\ \tilde{D}\text{Irect} \tilde{X}_1^{\dagger} \tilde{X}_1^{\top} \text{ prod., long-lived} \\ \text{Stable, stopped } \tilde{g} \text{ R-hadron} \\ \text{Metastable } \tilde{g} \text{ R-hadron} \\ \text{GMSB, stable } \tilde{\tau}, \tilde{X}_1^{0} \rightarrow \tilde{\tau}(\tilde{c}, \tilde{\mu}) \rightarrow \\ \text{GMSB, } \tilde{X}_1^{0} \rightarrow \gamma \tilde{G}, \text{ long-lived } \tilde{X}_1^{0} \\ \tilde{g} \tilde{g}, \tilde{X}_1^{0} \rightarrow \gamma \gamma \tilde{G}, \\ \text{GM} \tilde{g} \tilde{g}, \tilde{X}_1^{1} \rightarrow Z \tilde{G} \end{array}$	$ \begin{array}{c} \overset{+}{\underset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{1$	1 jet - 1-5 jets - - - μμ - ts -	Yes Yes - Yes - Yes -	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	X [±] ₁ 270 GeV X̄₁¹ 495 GeV 𝔅 850 GeV 𝔅 537 GeV X̄⁰ 537 GeV 𝔅⁰ 440 GeV 𝔅⁰ 1.0 TeV 𝔅⁰ 1.0 TeV	$\begin{split} & m(\tilde{\xi}_1^n)-m(\tilde{\xi}_1^n)\sim&160\ MeV,\ \tau(\tilde{k}_1^n)=0.2\ ns\\ & m(\tilde{\xi}_1^n)-m(\tilde{\xi}_1^n)\sim&160\ MeV,\ \tau(\tilde{k}_1^n)<&15\ ns\\ & m(\tilde{\xi}_1^n)=&100\ GeV,\ \tau(s,\tau(s))=000\ s\\ & n(\tilde{\xi}_1^n)=&100\ GeV,\ \tau>&10\ ns\\ & 10<&tag.\ s\\ & 10<&10<&10\\ & 10<&10<&10\\ & 10<&10<&10\\ & 10<&10<&10\\ & 10<&10<&10\\ & 10<&10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10\\ & 10<&10$	1310.3675 1506.05332 1310.6584 <i>To appear</i> 1411.6795 1409.5542 1504.05162
	RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu \\ Billinear RPV CMSSM \\ \tilde{x}_{\tau}^{1}\tilde{x}_{\tau}, \tilde{x}_{\tau}^{+} \rightarrow W \tilde{x}_{\tau}^{0}, \tilde{x}_{\tau}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu \\ \tilde{x}_{\tau}^{1}\tilde{x}_{\tau}, \tilde{x}_{\tau}^{+} \rightarrow W \tilde{x}_{\tau}^{0}, \tilde{x}_{\tau}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu \\ \tilde{x}_{\tau}^{1}\tilde{x}_{\tau}, \tilde{x}_{\tau}^{+} \rightarrow W \tilde{x}_{\tau}^{0}, \tilde{x}_{\tau}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu \\ \tilde{x}_{\tau}^{1}\tilde{x}_{\tau}, \tilde{x}_{\tau}^{+} \rightarrow W \tilde{x}_{\tau}^{0}, \tilde{x}_{\tau}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu \\ \tilde{x}_{\tau}^{1}\tilde{x}_{\tau}, \tilde{x}_{\tau}^{+} \rightarrow W \tilde{x}_{\tau}^{0}, \tilde{x}_{\tau}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu \\ \tilde{x}_{\tau}^{1}\tilde{x}_{\tau}, \tilde{x}_{\tau}^{+} \rightarrow W \tilde{x}_{\tau}^{0}, \tilde{x}_{\tau}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu \\ \tilde{x}_{\tau}^{1}\tilde{x}_{\tau}, \tilde{x}_{\tau}^{+} \rightarrow W \tilde{x}_{\tau}^{0}, \tilde{x}_{\tau}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu \\ \tilde{x}_{\tau}^{1}\tilde{x}_{\tau}, \tilde{x}_{\tau}^{+} \rightarrow W \tilde{x}_{\tau}^{0}, \tilde{x}_{\tau}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu \\ \tilde{x}_{\tau}^{1}\tilde{x}_{\tau}, \tilde{x}_{\tau}^{+} \rightarrow W \tilde{x}_{\tau}^{0}, \tilde{x}_{\tau}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu \\ \tilde{x}_{\tau}^{1}\tilde{x}_{\tau}, \tilde{x}_{\tau}^{+} \rightarrow W \tilde{x}_{\tau}^{0}, \tilde{x}_{\tau}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu \\ \tilde{x}_{\tau}^{1}\tilde{x}_{\tau}, \tilde{x}_{\tau}^{+} \rightarrow Ee\tilde{x}_{\tau}^{0}, \tilde{x}_{\tau}^{0} \rightarrow ee\tilde{x}_{\tau}^{0}, ee\tilde{x}_{\tau}^{0} \rightarrow ee\tilde{x}_{\tau}^{0}, ee\tilde{x}_{\tau}^{0} \rightarrow ee\tilde{x}_{\tau}^{0} \rightarrow ee\tilde{x}_{\tau}^{0}, ee\tilde{x}_{\tau}^{0} \rightarrow ee\tilde{x}_{\tau}^{0}$	$\begin{array}{c} r & e\mu, e\tau, \mu\tau \\ 2 e, \mu (\text{SS}) \\ \tilde{v}_e & 4 e, \mu \\ \tilde{v}_\tau & 3 e, \mu + \tau \\ 0 \\ 2 e, \mu (\text{SS}) \\ 0 \\ 2 e, \mu \end{array}$		Yes Yes Yes - Yes b -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	β. 760 GeV ζ. [±] 760 GeV ζ. [±] 450 GeV ζ. [±] 917 GeV ζ. [±] 980 GeV ζ. [±] 880 GeV ζ. [±] 320 GeV ζ. 0.4-1.0 TeV	$\begin{array}{c c} \textbf{1.7 TeV} & \lambda_{311}^{\prime}=0.11, \lambda_{1321133/233}=0.07 \\ \textbf{1.45 TeV} & \textbf{m}(\tilde{q})-\textbf{m}(\tilde{q}), e_{T_{2}}+c_{1} \text{ mm} \\ \textbf{m}(\tilde{k}^{\prime})>0.2 \times \textbf{m}(\tilde{k}^{\prime}), \lambda_{131}\neq 0 \\ \textbf{m}(\tilde{k}^{\prime})>0.2 \times \textbf{m}(\tilde{k}^{\prime}), \lambda_{133}\neq 0 \\ \textbf{BR}(t)=\textbf{BR}(t)-\textbf{BR}(c)=0\% \\ \textbf{m}(\tilde{k}^{\prime})=800 \text{ GeV} \\ \end{array}$	1503.04430 1405.5086 1405.5086 1502.05686 1502.05686 1502.05686 1404.2500 1601.07453 ATLAS-CONF-2015-015
1	Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 510 GeV	m($ ilde{k}_{1}^{0}$)<200 GeV	1501.01325
	*Onl	y a selection of the availa	ble mass lim	its on nev	V	1	0 ⁻¹	1 Mass scale [TeV]	

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary

26th Marcn, 2016

ineory ws @ watsue

Mass scale [TeV]

13TeVの恩恵

26th March, 2016

Sensitivity for each channel

Before experiment...

ATLAS 2011+2012 Full data

5fb⁻¹(7TeV)+20fb⁻¹(8TeV)

Decay channel	Expected sensitivity	Observed Sensitivity
ggF,(VBF):H→ZZ	6.2σ	8.1σ
ggF,VBF:H→ƳƳ	4.6σ	5.2σ
ggF,VBF:H→WW	5.8σ	6.1σ
(ggF),VBF:H→ττ	3.4 σ	4.5 σ
VH,H→bb	2.6σ	1.4σ
Н→μμ	<7.2xSM	<7.0xSM
ttH:H→bb	<2.2xSM	<3.4xSM

実験前の予想はあまりあてにならないが…

予想よりかなり良い結果!!

Summary of individual results.

26th March, 2016

Higgsの前に... SM process

26th March, 2016