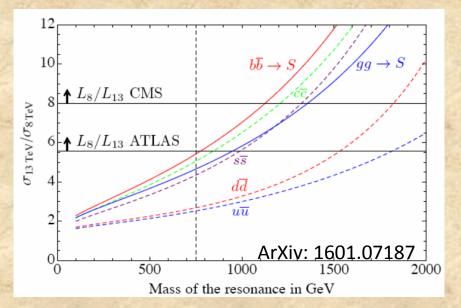

Heavy Fermion Bound States for Diphoton Excess at 750GeV

Shigeki Matsumoto (Kavli IPMU)

With C. Han, K. Ichikawa, M. M. Nojiri, M. Takeuchi [Arxiv:1602.08100]


Summarizing the diphoton excess at 750GeV
An interpretation by fermion bound states
Is it still phenomenologically viable?

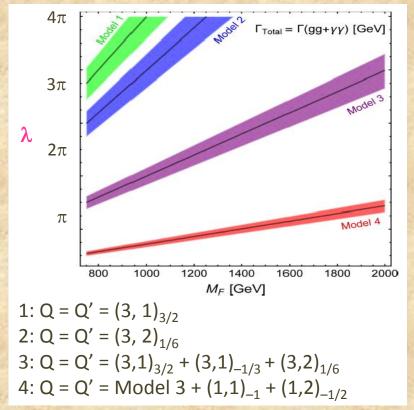
- ✓ The Mass of the resonance should be around 750GeV.
- \checkmark Its width seems large (45GeV) for ATLAS, while small for CMS.
- ✓ Its spin should not be one when the final state is 2
- The CP property of the resonance (odd or even) is unknown.
- \checkmark The production cross section should be around 4—5fb (see next).
- The events are not accompanied by ETmiss, nor leptons or jets.
- ✓ Does the resonance give other signals like WW, ZZ, Zγ, and so on? $[\sigma_{WW} < 40$ fb, $\sigma_{ZZ} < 12$ fb, $\sigma_{Z\gamma} < 4$ fb, $\sigma_{ag} < 2.5$ pb at 8TeV.]

The excess @ 750GeV

Let us focus on the simplest case, namely $pp \rightarrow (Resonance) \rightarrow \gamma\gamma$. Which parton (inside a proton) actually produces the resonance?

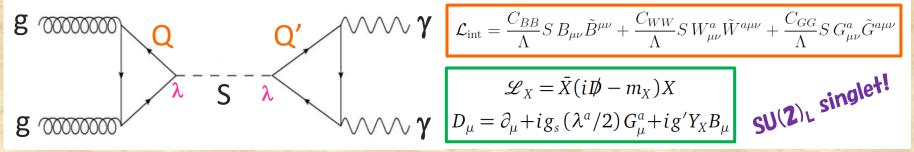
When $q\bar{q}$ produces the resonance, $\sigma(13TeV)/\sigma(8TeV) = 2.5$ When gg produces the resonance, $\sigma(13TeV)/\sigma(8TeV) = 4.5$ $\sigma(8TeV)$ should be < 1-2fb! while $\sigma(13TeV)$ of 4-5fb is required,

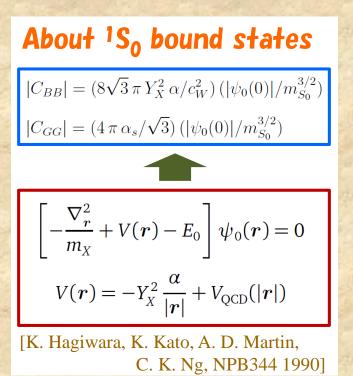
2/8

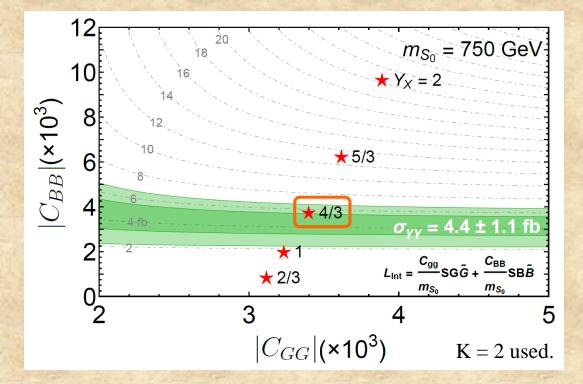

The resonance seems to be produced by the gluon fusion in this case! Production cross section of the diphoton process is simply given by Scaler case: $\sigma(pp \to S \to \gamma\gamma) \sim 5 \times 10^6 K \frac{\Gamma(S \to gg)}{\Gamma_{tot}} \frac{\Gamma(S \to \gamma\gamma)}{m_S} \text{ fb}$

The excess @ 750GeV

The cross section is rephrased by a diagram or effective interactions.

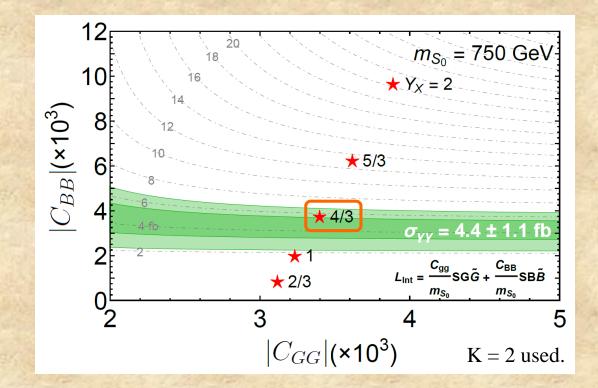






Fermion bound state for Excess

The scalar particle S does not have to be introduced, for Q is colored!



Fermion bound state for Excess

The scalar particle S does not have to be introduced, for Q is colored!

$$\begin{array}{c} \mathbf{g} \\ \hline \mathbf{0} \\ \mathbf{g} \\ \hline \mathbf{g} \\ \hline \mathbf{0} \\ \mathbf{g} \\ \hline \mathbf{g} \\ \hline \mathbf{g} \\ \hline \mathbf{0} \\ \mathbf{g} \\ \hline \mathbf{g} \hline \mathbf{g} \\ \hline$$

About ${}^{1}S_{0}$ bound states $|C_{BB}| = (8\sqrt{3}\pi Y_{X}^{2}\alpha/c_{W}^{2})(|\psi_{0}(0)|/m_{S_{0}}^{3/2})$ $|C_{GG}| = (4\pi\alpha_{s}/\sqrt{3})(|\psi_{0}(0)|/m_{S_{0}}^{3/2})$ $\left[-\frac{\nabla_{r}^{2}}{m_{X}} + V(r) - E_{0}\right]\psi_{0}(r) = 0$ $V(r) = -Y_{X}^{2}\frac{\alpha}{|r|} + V_{QCD}(|r|)$ [K. Hagiwara, K. Kato, A. D. Martin, C. K. Ng, NPB344 1990]

Constraints on the Scenario

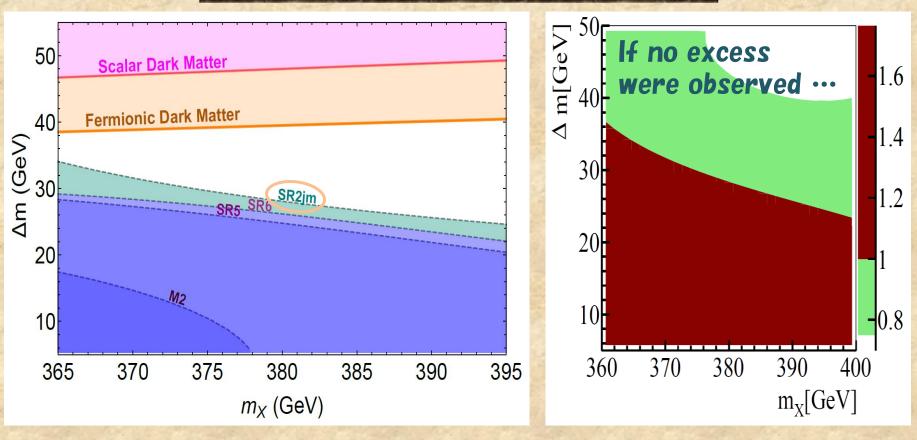
Are there some constraints from other decay modes of bound states?

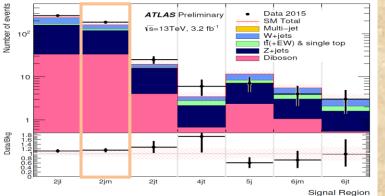
@8TeV	Prediction	Limit
$S_0 \rightarrow Z\gamma$	0.74 fb	4.0 fb
$\rightarrow ZZ$	0.11 fb	12 fb
$S_1 \rightarrow \ell^+ \ell^-$	0.13 fb	1.2 fb
$\rightarrow \tau^+ \tau^-$	0.064 fb	12 fb
$\rightarrow t \bar{t}$	0.072 fb	550 fb
$\rightarrow b \bar{b}$	0.021 fb	1 pb
$S_0 + S_1 \rightarrow jj$	7 fb	2.5 pb

S₀ = Colorless para-quarkonium S₁ = Colorless ortho-quarkonium

5/8

 S_1 is produced from $q\bar{q}$ collisions and decays mainly into fermions.


No color octet bound states exist, for QCD gives a repulsive force.


Is there a constraints from direct X searches? If depends on X decay! Quantum numbers of $X = (3,1)_{4/3}$ Its decay must be described by higher dimensional operators. The width will be suppressed. [It is phenomenologically nice, otherwise S₀ is very unstable.] When X \rightarrow Only SM particles: X d_{Λ} d_{Λ} Uhen X \rightarrow Only SM particles: X d_{Λ} d_{Λ} Uhen X \rightarrow DM + SM particles: Uhen X \rightarrow DM + SM particles: X d_{Λ} d_{Λ} Uhen X \rightarrow DM + SM particles: X d_{Λ} d_{Λ} Uhen X \rightarrow DM + SM particles: X d_{Λ} d_{Λ} Uhen X \rightarrow DM + SM particles: X d_{Λ} d_{Λ} Uhen X \rightarrow DM + SM particles: X d_{Λ} d_{Λ} d_{Λ} Uhen X \rightarrow DM + SM particles: X d_{Λ} d_{Λ} d_{Λ} Uhen X \rightarrow DM + SM particles: X d_{Λ} d_{Λ} d_{Λ} d_{Λ} d_{Λ} Uhen X \rightarrow DM + SM particles: X d_{Λ} $d_{$

Constraints on the Scenario

 \checkmark When $\Delta m = m_{\chi} - m_{\gamma}$ is large enough, we have the following signal: $pp \rightarrow XX \rightarrow (j j \chi) (j j \chi)$ [Multi-jet + ETmiss] $m_x = 375$ GeV has been ruled out when $\Delta m > about$ one hundred GeV. 8TeV LHC: [The ATLAS collaboration, arXiv:1507.05525.] 13TeV LHC: [The ATLAS collaboration, ATLAS-CONF-2015-062.] \checkmark When $\triangle m = m_{\chi} - m_{\gamma}$ is small enough, we have the following signal: $pp \rightarrow XXj_{ISR} \rightarrow (j j \chi) (j j \chi) j_{ISR}$ [Mono-jet + ETmiss] $m_x = 375$ GeV has been ruled out when $\Delta m < a$ few tens of GeV. 8TeV LHC: [The ATLAS collaboration, PRD90, 052008 (2014).] 8TeV LHC: [The ATLAS collaboration, EPJ C75, 299 (2014).] **13**TeV LHC: [The ATLAS collaboration, ATLAS-CONF-2015-062.] \checkmark When $\Delta m = m_{\chi} - m_{\gamma}$ is large, we have a cosmological constraint: $\Omega_{DM}h^2 \propto 1/\langle \sigma_{eff}v \rangle \ll \langle \sigma_{eff}v \rangle \propto Exp(-2\Delta m/T_f)$ with $T_f \sim m_\chi/25$. This is because χ does not have any renormalizable interactions. Coannihilation: [K. Griest and D. Seckel, PRD43, 3191 (1991).]

Constraints on the Scenario

Signal Region	2jl	2jm	2jt	4jt	5j	6jm	6jt		
N C expected events									
Diboson	33	33	4.0	0.7	2.4	1.1	0.5		
Z/γ^* +jets	151	94	12	1.8	4.9	2.5	1.3		
W+jets	72	42	4.5	0.9	3.0	1.6	0.9		
$t\bar{t}(+EW) + single top$	18	17	1.2	0.9	2.7	1.6	1.1		
Multi-jet	0.6	0.8	0.03	_	_	_	-		
Total MC	275	188	22	4.3	13	6.7	3.8		
Fitt d background events									
Diboson	33 ± 17	33 ± 17	4.0 ± 2.0	0.67 ± 0.35	2.4 ± 1.3	1.1 ± 0.6	0.5 ± 0.4		
Z/γ^* +jets	127 ± 12	85 ± 8	12 ± 4	1.5 ± 0.6	4.5 ± 1.3	2.0 ± 0.7	1.1 ± 0.6		
W+jets	61 ± 4	32 ± 5	2.9 ± 0.8	0.7 ± 0.4	3.3 ± 1.0	1.7 ± 0.7	1.0 ± 0.6		
$t\bar{t}(+EW) + single top$	14.6 ± 2.9	10.5 ± 2.6	0.7 ± 0.5	0.6 ± 0.4	1.4 ± 0.5	0.8 ± 0.4	0.46 ± 0.33		
Multi-jet	0.51 ± 0.06	0.6 ± 0.5	-	_	_	_	-		
Total bkg	237 ± 22	163 ± 20	20 ± 5	3.5 ± 0.8	11.7 ± 2.2	5.5 ± 1.2	3.1 ± 0.9		
Observed	264	186	25	6	7	4	3		
$\langle \epsilon \sigma \rangle_{obs}^{95}$ [fb] S_{obs}^{95} S_{exp}^{95}	24	21	5.9	2.5	2.0	1.6	1.6		
S 95	76	67	19	8.2	6.3	5.3	5.0		
S 95	52^{+22}_{-15}	46^{+19}_{-12}	$14.1^{+5.1}_{-3.1}$	$5.7^{+2.2}_{-1.6}$	$8.5^{+3.3}_{-2.1}$	$6.5^{+2.5}_{-1.6}$	$5.0^{+2.3}_{-1.4}$		
$p_0^{\text{exp}}(\mathbf{Z})$	0.11 (1.20)	0.12 (1.15)	0.18 (0.93)	0.14(1.08)	0.5 (0.0)	0.5(0.0)	0.5(0.0)		

- Non-relativistic bound state can be responsible for the diphoton excess at 750GeV. Considering the color triplet fermion which is singlet under SU(2)_L, its hypercharge Y_X is suggested to be 4/3 by the strength of the excess, though some uncertainties remain.
- Such an exotic hypercharge Y_x makes the constituent fermion X unstable through higher dimensional operators. In spite of this exotic nature, it is phenomenologically nice, since otherwise the strength of the diphoton signal would be much weaker.
- Decay scenario of X into a dark matter and some SM particles is interesting, for it is consistent with cosmology and all LHC data. It survives thanks to a small excess in the X search at 13TeV!