

Belle IIの物理

石川明正 (東北大学)

フレーバー物理の意義

SuperKEKB 加速器

- KEKB加速器の40倍のルミノシティー
 - Nano-beam scheme x20, beam current x2
- 非対称エネルギー 7GeV x 4GeV ← Y(4S) resonance 上
 - 時間依存 CPV を測定するために、B中間子を Z 方向に boost
 - boost factor は KEKB より小さくなった

SuperKEKBでビーム周回

- 2016/2/8 Low Energy Ring (LER) に最初の ビーム入射
- 2016/2/9 LERのビームが周回
- 2016/2/10 LER RF cavity の電源on
 シンクロトロン放射によるエネルギー損失を補償
- 2016/2/22 High Energy Ring (HER)にビーム入 射
- 2016/2/24 HERのビームが周回した
- 2016/2/24 HER RF cavity の電源on

The green pulses are the revolution clock. Injection rate is still 1 Hz

20160326

Belle II 検出器

- 10-20倍のバックグラウンドでも Belle 検出器以上の性能を維持
 - Barrel/Forward Endcap Kaon ID の大幅な向上
 - $B \rightarrow K^* \gamma VS B \rightarrow \rho \gamma$
 - 崩壊点検出器の内層はIPに近く、外層は大きく
 - Vertex resolution の向上、long lived Ks を使った vertexing efficiency の向上
 - LHCbで苦手な π⁰, K⁰ も再構成可能、電子のIDも可能
- (ほぼ)すべてのB中間子崩壊を記録する
 - 逆側のBを再構成する事により、B⁰→ nothing でさえも探索可能
 - Effective flavor tagging efficiency >30% (LHCb ~3%)

Schedule

- 2016年2月~6月 Phase1 Beast II Detector
- 2017年11月~2018年3月 Phase2 Bellell w/o VTX
 - On Y(nS) n<4</p>
 - ハドロン物理、Dark Photon Search
- 2018年10月~ Phase3 Belle II w/ VTX
 - On Y(4S)
- ただし、Phase2でバックグラウンドがVTX検出器を入れるのに 十分小さければ、すぐに Phase3 に移行する事を考えている

Belle II construction schedul	le : 2016 Jan						
	2	016	2	017		2018	2019
	1 2 3 4 5 6	6 7 8 9 10 11 12	1 2 3 4 5 6	6 7 8 9 10 11	12 1 2 3 4	5 6 7 8 9 10	11 12 1 2 3
		Summer		Summer		Summer	
Global Operation	Phase 1 (5mo)	Shutdown		Shutdown Pha	ase 2 (5mo)	Shutdown Ph	ysics Run
machine time per JFY	2		3		5		6
Belle roll-out/in							
		phase 1 to 2			pha	ase 2 to 3	
20160226							On Beam
Global PositibRU320	pit		On Beam Line		On Beam Line		Pine

Integrated Luminosity

2024年に50ab⁻¹ (Belle の50倍)

- 5x10¹⁰ BB pairs, 4.5x10¹⁰ $\tau^+\tau^-$ pairs

Calendar Year

LHCb と比較する際

- Belle II 2024年に50ab⁻¹
- LHCb 2024年に22fb⁻¹

Belle II での物理

- Unitarity Triangle の精密測定
 - △B=2 loop B⁰-B⁰bar mixing での新物理探索
- Penguin 崩壊の精密測定
 - △B=1 loop での新物理探索
 - b→sqq 崩壊での TCPV
 - b→sγ, sl+l⁻, svv, dγ, dl+l⁻の精密測定
- τを終状態に持つ B の崩壊
 - Tree過程
 - Β→τν, D^(*)τν

- Charm の精密測定
 - D⁰-D⁰bar Mixing, CPV
- τのLFV崩壊
- Dark Photon
- Radiative Return
- 他にも色々
 - ee→µµ での A_{FB}
 - エキゾチックハドロン
 - ハドロンスペクトロスコピー

Unitarity Triangle

- ・ CKM matrix のかけ算して d 行 b 列をとると複素平面に三角形が書ける $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$
- Tree と Penguin が作る Triangle が一致しなければ、新物理の発見
 すべての辺と角は Belle II で測定可能

辺と角の測定

- ・ Δm_d → |Vtd| の誤差は lattice が dominate

11

UT (ϕ_3 and |Vub| only)

- Loop (ϕ_1 , ϕ_2 , Δm_d) の測定は現在でも比較的良い精度 •
- Tree (\u03643, |Vub|)の測定が特に重要 •
 - |Vub|の誤差を1/3、∮3の誤差を1/8に出来る

2013 ~2025 1.5 1.5 r excluded area has CL > 0.95 excluded area has CL > 0.95 CKM fitter CKM fitter 2013 1.0 $\gamma(\alpha)$ 1.0 $\gamma(\alpha)$ 0.5 Vubr 0.5 V_{ub} Ц 0.0 Ч 0.0 0.45 r γ & γ(α) & V_{ub} 0.40 -0.5 -0.5 γ & γ(α) & V_{ub} 0.35 $\gamma(\alpha)$ 0.30 -1.0 γ(α) -1.0 0.25 0.10 0.15 0.20 -1.5 -1.5 -0.5 0.0 0.5 1.0 1.5 0.5 1.5 -1.0 -1.0 -0.5 0.0 1.0 2.0 ρ $\overline{\rho}$

0.25

2.0

B⁰-B⁰bar Mixing の中の新物理

~2025

 $M_{12}^{d,s} = (M_{12}^{d,s})_{\rm SM} \times (1 + h_{d,s} e^{2i\sigma_{d,s}})$

- $\phi_1, \phi_2, \Delta m_d, a^{SL}_d$
- Treeでの新物理は無視できると仮定
- 現在O(0.1)の新物理は許されているが、 10年後には棄却できる
 - $-h_{d} < 0.07 @95\%$ CL

 $\frac{C_{ij}^2}{\Lambda 2} (\bar{q}_{i,L} \gamma^\mu q_{j,L})^2$ $h \simeq 1.5 \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \frac{(4\pi)^2}{G_F \Lambda^2} \simeq \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \left(\frac{4.5 \,\mathrm{TeV}}{\Lambda}\right)^2$ $\sigma = \arg(C_{ij} \lambda_{ij}^{t*}),$

Couplings	NP loop	Scales (in 7	eV) probed by		
Couplings	order	B_d mixing	B_s mixing		
$ C_{ij} = V_{ti}V_{tj}^* $	tree level	17	19		
(CKM-like)	one loop	1.4	1.5		
$ C_{ij} = 1$	tree level	2×10^3	$5 imes 10^2$		
(no hierarchy)	one loop	2×10^2	40		

2013

Penguin 崩壊

b→sqq 崩壊での時間に依存したCPV

- $b \rightarrow s \mathcal{O}$ QCD penguin
 - SMでは時間に依存したCPV (TCPV) sin2 φ1 eff は $B \rightarrow J/\psi K^0$ で測定されたsin2 ϕ_1 とほぼ同じ

φK_s

η'Κ_ε

π⁰K_e

ωKs

KKK_s

some of recent QCDF estimates

 $sin 2\beta_{eff}^{f} - sin 2\beta$

sin2∮₁からずれたら新物理の発見

- **Decay modes**
 - B→¢Ks
 - B→η′Ks
 - $B \rightarrow KsKsKs$
 - ~2%の理論誤差

20160326

TCPV in $b \rightarrow sq\overline{q}$ @ Belle II

- 誤差は統計で決まってるので大体7倍改善
- 理論誤差~0.02と同程度
 - B→KsKsKs 以外
- 新物理模型に強い制限
 - SU(5) SUSY GUT + degenerate v_R

Mode	5 ab^{-1}		50 ab^{-1}	l
	$\sigma(\mathcal{S})$	$\sigma(\mathcal{A})$	$\sigma(\mathcal{S})$	$\sigma(\mathcal{A})$
$\eta' K^0$	0.028	0.020	0.011	0.009
ϕK_S^0	0.053	0.070	0.018	0.023
$K_S K_S K_S$	0.101	0.064	0.033	0.021

- LHCb は Ks を再構成するのが不得手
 - Ks が tracking detector の外で崩壊する事が多々ある
 - φ→K⁺K⁻ は opening angle が小さいから vertex を測定しにくい
 - Effective flavor tagging efficiency が Belle の 1/10ぐらい

$\mathsf{BF}(\mathsf{B} \to \mathsf{X}_{\mathsf{s}} \gamma)$

- 標準模型では top-W loop
- 2HDM type-II では charged Higgs-top loop が 可能
 - 標準模型 amp. に対して constructive
 - ほとんど $\tan \beta$ に寄らない。
- SUSY だと chargino-stop loop が可能
 - Constructive か destructive かは SUSY の parameter 領域による
- Belle, Babar, CLEO によって精密に測定されており、理論の予言と一致している

$$\mathcal{B}_{s\gamma}^{\text{exp}} = (3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$$
$$\mathcal{B}_{s\gamma}^{\text{SM}} = (3.36 \pm 0.23) \times 10^{-4}$$

20160326

Misiak et al, Phys. Rev. Lett. 114, 221801 (2015)

Limit on 2HDM type-II

現在の実験の World Average と理論
 予言は両方とも 7% 程度の誤差

$$\mathcal{B}_{s\gamma}^{\text{exp}} = (3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$$

 $\mathcal{B}_{s\gamma}^{\text{SM}} = (3.36 \pm 0.23) \times 10^{-4}$
for $E_0 = 1.6 \,\text{GeV}$

 $M_{H^{\pm}} > 480 \,\mathrm{GeV}$

$BF(B \rightarrow X_{s}\gamma)$ @ Belle II

- 最も誤差を抑える方法は photon しか見ない解析
- 将来的な誤差

20160326

- 実験は系統誤差が支配的だが E_γ >1.9GeV で あれば4%以下まで押さえられる
 - 理論と比較するために E_y > 1.6 GeV に外挿しなくては ならないが、その誤差は 1% 以下
 - 新物理は photon spectrum を変えない
- 理論は4%まで減らせる
 - Misiak Group の人によると
- 仮に実験と理論の中心値が同じであれば $M_{H^+} > 600 GeV$
- LHCでは制限が難しい moderate tanβ ~7付近を探 索できる

Belle results

BF(B -	$X_s \gamma)$	(10^{-4})
1.70 1.80	1.90	2.00
3.45 3.36	3.21	3.02
$0.15 \ 0.13$	0.11	0.10
0.40 0.25	0.16	0.11
	$\begin{array}{c} {\rm BF}(B-\\ 1.70 \ 1.80\\ 3.45 \ 3.36\\ 0.15 \ 0.13\\ 0.40 \ 0.25 \end{array}$	$\begin{array}{c c} BF(B-X_s\gamma) \\ \hline 1.70 & 1.80 & 1.90 \\ \hline 3.45 & 3.36 & 3.21 \\ 0.15 & 0.11 & 0.11 \\ 0.40 & 0.21 & 0.16 \end{array}$

Photon Polarization in $b \rightarrow s\gamma$

- SMでは光子は左巻き
 - 右巻きは O(m_s/m_b)で抑制
- 右巻きカレントを持つ新物理があったら光子の偏極を変える
 - LRSM, SUSY etc.
- 4つの光子の偏極測定方法
 - − TCPV in $B \rightarrow f_{CP} \gamma$
 - − A_{UD} in $B \rightarrow K_1(K\pi\pi)\gamma$
 - − Very low q^2 analysis in $B \rightarrow K^*ee$
 - Photon conversion
 - Opening angle が小さいのでものすごく薄く軽い detector が必要

TCPV in $B^0 \rightarrow K_s \pi^0 \gamma$

 右巻光子があり、Hadronic system が CP の eigenstate だと、干渉が起こり 大きな時間依存 CPV が起こる

標準模型
$$|S_{CP}| \approx \frac{2m_s}{m_b} \sin 2\phi_1 \sim \text{a few \%}$$

TCPV in $B^0 \rightarrow K_s \pi^0 \gamma$ at Belle II

- 理論誤差~0.03と同程度で測定
- 新物理模型に強い制限
 - SU(5) SUSY GUT + degenerate v_{R}

Mode	5 ab^{-1}	50 ab^{-1}
$K_S \pi^0 \gamma$	0.11	0.03
$ ho^0\gamma$	0.23	0.06

B→Kππγ : Towards A_{UD}

- LHCb 3fb⁻¹@7TeV+8TeV
 - 14000 B⁺→K⁺π⁻π⁺γ
 - for $M_{K\pi\pi}$ <1.9GeV

Heyoung Yang, et al., PRL 94, 091601(2005)

K1(1270) enriched sample $0.6 \text{ GeV}/c^2 < M_{\pi\pi} < 0.9 \text{ GeV}/c^2$ $M_{bc}(\text{GeV}/c^2)$ $M_{bc}(\text{GeV}/c^2)$ $M_{bc}(\text{GeV}/c^2)$ $M_{bc}(\text{GeV}/c^2)$

- Belle 140fb⁻¹
 - 318 B⁺→K⁺π⁻π⁺γ
 - 68 B⁰ \rightarrow K⁰ π ⁻ π ⁺ γ
 - for $M_{K\pi\pi}$ <2.0GeV

20160326

Aunの大きさ

- π⁰を含むモードはA_{UD}が大きい
- 三つの経路があるので、Dalitz平面上での干渉が大きい

 K1(1400) だとπ⁰ を含むモードの A_{UD} の大きさは含まないモー ドの4.7倍 → 22倍の統計に匹敵

20160326

 $B^{0} \rightarrow a_{1}^{0} \gamma \rightarrow (\rho^{\pm} \pi^{\mp}, \rho^{0} \pi^{0}) \gamma \rightarrow \pi^{+} \pi^{-} \pi^{0} \gamma$ も計算して頂けるとありがたいです。²⁵

単純なA_{UD}への感度の比較

- Belle では K⁰ππ と Kππ⁰ が同じぐらいの数測定出来る
- π⁰ モードが22倍の統計パワーを持つ事を考慮に入れる
 - δ Ns/Ns=765 for Belle II
 - δ Ns/Ns=403 for LHCb

現在[event] 2024年[event]	K ⁺ π ⁻ π ⁺ γ	Κ ^ο π⁻π⁺γ	K⁺π⁻π⁰γ *22	合計
LHCb	13876±153 280000±683			13876±153 280000±683
Belle II	318±22 114000±420	68±10 24000±189	~1496±42 528000±800	1882±46 666000±870

実際には resonance の分離や、up event と down event の cross-feed の効果も考慮に入れなくてはいけない

Isospin Violation in $B \rightarrow \rho \gamma$

 Δ_ρ Isospin Violation が理論の予 言より大きい?

$$\Delta_{\rho} = \frac{\Gamma(B^- \to \rho^- \gamma)}{2\Gamma(\overline{B}{}^0 \to \rho^0 \gamma)} - 1$$

- ~2.5 σ deviation

- 現在の系統誤差は以下が主だが
 Belle IIでは減らせる
 - シグナルとBGの shape
 - Peaking BG
- 多分B⁺/B⁰ production ratio f₊₋/f₀₀
 が主要な誤差となる

measurement	Δρ
Babar 423fb ⁻¹	$-0.43^{+0.25}_{-0.22}\pm0.10$
Belle 605fb ⁻¹	$-0.48\substack{+0.21+0.08\\-0.19-0.09}$
Average	$-0.46^{+0.17}_{-0.16}$ 27

Prospects of $\delta \Delta_{\rho}$

- もし中央値 -0.46 がそのままであ れば, isospin violation in B→ργを ~1.4ab⁻¹で発見可能
 - 実験誤差~0.09.
- 新物理の発見には~3ab⁻¹必要
 - 実験誤差~0.06.
 - 理論予言 (-5±5)%
 - 実験初期に何か言える
- 50ab⁻¹ためると実験誤差は
 δΔ_ρ~0.024

prediction	Δ _ρ [%]
Ali Lunghi	+ 4 ⁺¹⁴ ₋₇ %
Lyon Zwicky	$-10\pm6\%$
Ball Jones Zwicky	$-5.4 \pm 3.9 \%$ if $\phi_3 = 60 deg$
Beneke, Feldmann, Seidel	- 4.6土7%

20160326

 R_{K} , R_{K^*} and R_{X_S}

• LHCb

 $\mathcal{R}_K = 0.745^{+0.090}_{-0.074} \pm 0.036$ - 電子モードはそれほど得意じゃない

- High q²は無理
- Belle II
 - 電子モードとミューオンモードの効率は同程度
 - Low and high q² 両方可能

Phys. Rev. Lett. 113, 151601 (2014)

Full Reconstruction

- 終状態に複数のvを含むモード
 - Bの質量を測定出来ないため単純には再構成できない
- Full reconstruction tagging を使う
 - 逆側のB(tag side)を再構成する。
 - 残りの粒子が signal event から来ている事を要求
 - カロリーメータに余分なエネルギーが無い

 $B \rightarrow K^{(*)} \nu \nu$

- B→ K*µµ と違い Charm loop の影響は無い。
- 理論の予言は clean ~11%

BR $(B^+ \to K^+ \nu \bar{\nu})_{\text{SM}} = (3.98 \pm 0.43 \pm 0.19) \times 10^{-6}$, 誤差はFFとparametric BR $(B^0 \to K^{*0} \nu \bar{\nu})_{\text{SM}} = (9.19 \pm 0.86 \pm 0.50) \times 10^{-6}$, $F_L^{\text{SM}} = 0.47 \pm 0.03$, Buras et al 1409.4557

- Belle からの外挿
 - -90 ± 30 event
 - 3σ?

400 SM signal 5350 assumed $B^+ \rightarrow K^+ \nu \overline{\nu}$ 1300 (Supports/0) $N_{sig} = 91.5 \pm 32.2$ 150 100 **Belle II Projection** Lint = 50 ab-1 50 0.4 0.6 0.8 1.0 E_{FCI} [GeV]

N_{sig} at Belle II ~90±30 based on Belle 2013 (hadronic tag only)

Full Reconstruction の改善

- 崩壊チャンネルを約1500から約5000に増やし、BDTでtuningした。
- Tag side efficiency が約3倍になった
- Semileptonic Tagging も使える
 B→D*lv
- B⁰→Ksvvもcombine できる

Belle II でB→K^(*)vvは発見できる >5σ 以上(誤差20%以下)で測定出来る 10th BPAC P.Goldenzweig

Preliminary

Belle II B⁺ (hadronic) 0.78 % B⁰ (hadronic) 0.59 %

 Belle I
 (using B2BII)

 B⁺ (hadronic)
 0.39 %

 B⁰ (hadronic)
 0.28 %

Full Reconstruction

 ${
m B}^+$ (hadronic) 0.28 % ${
m B}^0$ (hadronic) 0.19 %

· T. Keck @fixed purity

τを終状態に持つB崩壊

$B \rightarrow \tau \nu$ and $B \rightarrow D^{(*)} \tau \nu$

B→τν

– SM は m_{τ} で helicity suppress

$$\mathcal{B}(B \to \ell \nu) = \frac{G_F^2 m_B}{8\pi} m_\ell^2 (1 - \frac{m_\ell^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$

- bもτも重いのでCharged Higgs に敏感 In Type -II 2HDM

ħ

q

В

$$\mathcal{B}(B \to \tau \nu) = \mathcal{B}(B \to \tau \nu)_{\mathsf{SM}} \times r_H$$

- Factor r_H は lepton flavor に寄らない
 - ・ Charged Higgs との coupling も m_r に比例
 - B→µvも重要
- B→D^(*)τν
 - 同様に charged Higgs に敏感

$$R(D) = \frac{\mathcal{B}(\bar{B} \to D\tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D\ell^- \bar{\nu}_{\ell})}$$
$$R(D^*) = \frac{\mathcal{B}(\bar{B} \to D^* \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^* \ell^- \bar{\nu}_{\ell})}$$

20160326

Wei-Shu Hou Phys. Rev. D48, 2342 (1993)

34

$B \rightarrow \tau v$ and $B \rightarrow D^{(*)} \tau v$ @ Belle II

	Statistical	Systematic	Total Exp				~ ~ ~ ~ ~ ~	
	(re	educible, irreducib	le)		S	itatistical	Systematic	Total Exp
$\overline{\mathcal{B}(B \to \tau \nu)}$ (had, tagged)	(**	saacioro, irroducio			$\overline{D(D)}$	(re	ducible, irreducib	le)
11 fb^{-1}	38.0	(14.2, 4.4)	40.8		R(D)	19.1	(0, 1, 2, 1)	16.9
ab^{-1}	14.4	(5.4, 4.4)	15.8		423 10 -	13.1	(9.1, 3.1)	10.2
0 ab^{-1}	4.6	(1.6, 4.4)	6.4		5 ab - ro 1-1	3.8	(2.0, 3.1)	5.0
$(B \to \tau \nu)$ (semileptonic)	tagged)	(,)			$\frac{D(D*)}{D(D*)}$	1.2	(0.8, 3.1)	3.4
11 fb^{-1}	24.8	(18, +6.0)	+31.2		$R(D^{+})$ 422 fb-1	71	(5.2, 1.0)	0.0
ab^{-1}	8.6	(6.2, +6.0)	-32.2 +12.2		423 10 - E _1 -1	0.1	(3.2, 1.9)	9.0
0 ab^{-1}	2.8	(2.0, +6.0)	$^{-14.4}_{+6.8}$		5 ab -	2.1	(1.5, 1.9)	3.2
5 40	2.0	(2.0, -9.6)	-10.2		50 ab 1	0.7	(0.5, 1.9)	2.1
50	- Total Statistics		0.4	Relie	11		_	
40	Theory (exp	ected)	0.35 -			\leftarrow		
30	···· Theory (curr	ent)	0.3 -					
ant		-				0		
			0.25				- H	IFAG
10				SM pr	ediction		$P(\chi^2)$	= 55.5%
0E			0.2		0.3	0.4	0.5	0
C .	Integrated Lum	inosity [ab ⁻¹]	http)://arxiv	.org/al	bs/160	3.06711	R(D)

Combined Limit on 2HDM type-II

- Charged Higgs に敏感な以下を combine し、m_H VS tanβ に制限
 - b→sγ
 - 理論誤差は将来改善
 - Β→τν
 - 理論誤差は将来改善
 - B→D^(*)τν

		Exp.		In.
	Now	5 ab⁻¹	50 ab ⁻¹	Now
$B \rightarrow \tau \nu$	25%	10%	3%	-7+14%
$B \rightarrow D\tau v$	30%	11%	4%	4%
$B \rightarrow D^* \tau v$	19%	7%	2%	2%
$B \rightarrow X_{s}\gamma$	7%	5%	4%	7%

$\tau \text{ LFV}$

τのLFV崩壊

- SuperKEKB は τ-Factory
 - $\ 4.5 x 10^{10} \ \tau^+ \tau^-$
- τのLFV崩壊が発見されたら新物理
- B(τ→μγ) < 2x10⁻⁹
 バックグラウンドをすでに被ってる
- B(τ→μμμ) < O(10⁻¹⁰)
 バックグラウンドフリー

LFV τ 崩壊のまとめ

• 48崩壊モード

その他

- Dark Photon
- Radiative Return

Single Photon Trigger

- Belle では single photon trigger が無かった
 - DAQの思想がBabarより古かったので、レートが高い single photon trigger は入れられなかった
- Belle II では single photon trigger が入った事により以下の物 理が可能
 - Dark Photon
 - Radiative Return $e^+e^- \rightarrow \gamma \pi^+\pi^-$ etc
 - → Hadronic Vacuum Polarization for muon g-2

Dark Photon探索

- Extra U(1) Model
 - Dark photon A'
 - 暗黒物質候補
 - photonとkinetic mixing
 - $\epsilon^2 = \alpha / \alpha_{EM}$
 - Babar より一桁改善

 $e^+e^- \rightarrow \gamma A' \rightarrow \gamma e^+e^-, \gamma \mu^+\mu^-, prompt$

Muon g-2

- BNLでの実験は理論と>3σのずれ
- 実験も理論予言も改善しなくてはならない
 - 実験 Fermilab, J-PARC
 - 理論 HVP→radiative return から計算, LBLS→lattice

[нц			111	Ī
HMNT (06)	⊢ ≢	-				
JN (09)	⊢∎	-				
Davier et al, τ (10)						
Davier et al, e ⁺ e [−] (10)	۱.	-				
JS (11)	r •	-				
HLMNT (10)	H-					
HLMNT (11)	H	■1				
experiment	· · · · ·	: 				
BNL				۱ ــــ	-	
BNL (new from shift in $\lambda)$				-	+	
17	70 180	uuu) 19	0 20	<u>і</u> ц. 20	210	
$a_{\mu} \times 10^{10} - 11659000$						

Hagiwara et al, J. Phys. G 38 (2011) 085003

Light by light scattering

Radiative Return

- Muon g-2 で一番重要なのは π⁺π⁻
- 方法
 - 1. Energy Scan $e^+e^- \rightarrow \pi^+\pi^-$
 - 2. Radiative Return $e^+e^- \rightarrow \pi^+\pi^-\gamma$
 - Luminosity の誤差は共通化できる
- KLOE と Babar で ρ peak でずれ
 - 誤差は systematic dominant, ρ 付近で 0.5%
 - Luminosity 0.34%
 - Pion-ID 0.24%

- Belle II では Babar と同程度の精度で測定可能。
- KLOE と Babar のずれを解決する。

まとめ

- 2018年にBelle II 実験は Y(4S)上で実験を開始し、2024年まで に50ab⁻¹のデータを取得する
- B, charm, τ から新物理を探索する
- 他にも Dark Photon, Hadronic Vacuum Polarization などの興味深い物理がある。
- ご期待ください。
 - LHC 13TeV の結果を踏まえた、新物理でのフレーバー測定量の予言があると嬉しいです。

backup

CKM Matrix and UT

- ・ Unitarity から $V_{
 m CKM}^{\dagger}V_{
 m CKM}=1$
- ・ この d行 b 列を取ると $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$
- 複素平面に閉じた三角形を描く(UT)
 B中間子を用いると三角形の角と辺の6つをすべて測定可能

新物理が入ってこないTree 過程が作る頂点 (ρ^{tree}, η^{tree})と、新物理に敏感な Loop 過程が作る頂点(ρ^{loop}, η^{loop})が異なったら新物理の発見

 $V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{to} & V_{ub} \end{pmatrix}$

位相を持つ

 $= \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ \hline \lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$

角の測定

・ CPV の測定

49

角の測定

|Vcb|, |Vub|の測定

Flavor Observable のまとめ

Observables	Belle	Bel	\mathcal{L}_s	
	(2014)	$5~{\rm ab^{-1}}$	$50~{\rm ab^{-1}}$	$[ab^{-1}]$
$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$	± 0.012	± 0.008	6
α		$\pm 2^{\circ}$	$\pm 1^{\circ}$	
γ	$\pm 14^{\circ}$	$\pm 6^{\circ}$	$\pm 1.5^{\circ}$	
$S(B ightarrow \phi K^0)$	$0.90\substack{+0.09\\-0.19}$	± 0.053	± 0.018	$>\!50$
$S(B ightarrow \eta' K^{ar{0}})$	$0.68 \pm 0.07 \pm 0.03$	± 0.028	± 0.011	$>\!50$
$S(B\to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	± 0.100	± 0.033	44
$ V_{cb} $ incl.	$\pm 2.4\%$	$\pm 1.0\%$		< 1
$ V_{cb} $ excl.	$\pm 3.6\%$	$\pm 1.8\%$	$\pm 1.4\%$	< 1
$ V_{ub} $ incl.	$\pm 6.5\%$	$\pm 3.4\%$	$\pm 3.0\%$	2
$\left V_{ub}\right $ excl. (had. tag.)	$\pm 10.8\%$	$\pm 4.7\%$	$\pm 2.4\%$	20
$ V_{ub} $ excl. (untag.)	$\pm 9.4\%$	$\pm 4.2\%$	$\pm 2.2\%$	3
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	96 ± 26	$\pm 10\%$	$\pm 5\%$	46
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	5σ	$>>5\sigma$	$>\!50$
$R(B \to D \tau \nu)$	$\pm 16.5\%$	$\pm 5.6\%$	$\pm 3.4\%$	4
$R(B \rightarrow D^* \tau \nu)$	$\pm 9.0\%$	$\pm 3.2\%$	$\pm 2.1\%$	3
$\mathcal{B}(B\to K^{*+}\nu\overline{\nu})~[10^{-6}]$	< 40		$\pm 30\%$	$>\!50$
$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55		$\pm 30\%$	$>\!50$
$\mathcal{B}(B \to X_s \gamma) \ [10^{-6}]$	$\pm 13\%$	$\pm 7\%$	$\pm 6\%$	< 1
$A_{CP}(B \to X_s \gamma)$		± 0.01	± 0.005	8
$S(B \to K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	± 0.11	± 0.035	> 50
$S(B \rightarrow \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	± 0.23	± 0.07	> 50
$C_7/C_9 \ (B \to X_s \ell \ell)$	$\sim 20\%$	10%	5%	
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	± 0.3		
$\mathcal{B}(B_s \to \tau^+ \tau^-)$ [10 ⁻³]		< 2		

Observables	Belle	Belle II		L.
	(2014)	5 ab^{-1}	$50 \ {\rm ab}^{-1}$	[ab-1]
$\mathcal{B}(D_s \rightarrow \mu\nu)$	$5.31 \times 10^{-3} (1 \pm 0.053 \pm 0.038)$	$\pm 2.9\%$	±(0.9%-1.3%)	> 50
$\mathcal{B}(D_s \rightarrow \tau \nu)$	$5.70 \times 10^{-3} (1 \pm 0.037 \pm 0.054)$	$\pm(3.5\%-4.3\%)$	±(2.3%-3.6%)	3-5
y_{CP} [10 ⁻²]	$1.11 \pm 0.22 \pm 0.11$	$\pm (0.11 - 0.13)$	$\pm (0.05 - 0.08)$	5-8
$A_{\Gamma} [10^{-2}]$	$-0.03\pm 0.20\pm 0.08$	±0.10	$\pm (0.03-0.05)$	7 - 9
$A_{CP}^{K^+K^-}$ [10 ⁻²]	$-0.32\pm 0.21\pm 0.09$	±0.11	± 0.06	15
$A_{CP}^{\pi^+\pi^-}$ [10 ⁻²]	$0.55 \pm 0.36 \pm 0.09$	±0.17	± 0.06	> 50
$A_{CP}^{\phi\gamma}$ [10 ⁻²]	± 5.6	± 2.5	± 0.8	> 50
$x^{K_S \pi^+ \pi^-}$ [10 ⁻²]	$0.56 \pm 0.19 \pm {0.07 \atop 0.13}$	±0.14	± 0.11	3
$y^{K_S \pi^+ \pi^-}$ [10 ⁻²]	$0.30 \pm 0.15 \pm 0.05 \\ 0.08$	±0.08	± 0.05	15
$ q/p ^{K_S\pi^+\pi^-}$	$0.90 \pm 0.16 \pm 0.08$ 0.15 ± 0.06	±0.10	± 0.07	5-6
$\phi^{K_S \pi^+ \pi^-}$ [°]	$-6 \pm 11 \pm \frac{4}{5}$	± 6	± 4	10
$A_{CP}^{\pi^0\pi^0}$ [10 ⁻²]	$-0.03 \pm 0.64 \pm 0.10$	±0.29	± 0.09	> 50
$A_{CP}^{K_S^0 \pi^0}$ [10 ⁻²]	$-0.10 \pm 0.16 \pm 0.09$	± 0.08	± 0.03	> 50
$Br(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5	$\pm 30\%$	$\pm 25\%$	2
	$\tau \rightarrow \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7
	$ au ightarrow e\gamma \; [10^{-9}]$	< 120	< 39	< 12
	$ au ightarrow \mu \mu \mu \ [10^{-9}]$	< 21.0	< 3.0	< 0.3

Dark Photon 現在の制限

Babar, Phys. Rev. Lett. 113, 201801 (2014)

Arxiv:1002.0329